Forecasting Heavy-Tailed Densities with Positive Edgeworth and Gram-Charlier Expansions

被引:24
作者
Niguez, Trino-Manuel [1 ]
Perote, Javier [2 ]
机构
[1] Univ Westminster, Westminster Business Sch, Dept Econ & Quantitat Methods, London NW1 5LS, England
[2] Univ Salamanca, Dept Econ, Salamanca 37007, Spain
关键词
C16; C53; G12; TIME-SERIES; VOLATILITY; MODELS; RISK;
D O I
10.1111/j.1468-0084.2011.00663.x
中图分类号
F [经济];
学科分类号
02 ;
摘要
This article presents a new semi-nonparametric (SNP) density function, named Positive Edgeworth-Sargan (PES). We show that this distribution belongs to the family of (positive) Gram-Charlier (GC) densities and thus it preserves all the good properties of this type of SNP distributions but with a much simpler structure. The in- and out-of-sample performance of the PES is compared with symmetric and skewed GC distributions and other widely used densities in economics and finance. The results confirm the PES as a good alternative to approximate financial returns distribution, specially when skewness is not severe.
引用
收藏
页码:600 / 627
页数:28
相关论文
共 41 条
[1]   Comparing density forecasts via weighted likelihood ratio tests [J].
Amisano, Gianni ;
Giacomini, Raffaella .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2007, 25 (02) :177-190
[2]  
[Anonymous], P 6 SCAND MATH C COP
[3]  
[Anonymous], 1977, The advanced theory of statistics
[4]  
[Anonymous], 1972, HDB MATH FUNCTIONS F
[5]   Predicting the volatility of the S&P-500 stock index via GARCH models: the role of asymmetries [J].
Awartani, BMA ;
Corradi, V .
INTERNATIONAL JOURNAL OF FORECASTING, 2005, 21 (01) :167-183
[6]  
BARTON DE, 1952, BIOMETRIKA, V39, P425, DOI 10.2307/2334037
[7]   GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSKEDASTICITY [J].
BOLLERSLEV, T .
JOURNAL OF ECONOMETRICS, 1986, 31 (03) :307-327
[9]  
Bollerslev T., 1992, Econometric Rev., V11, P143, DOI [DOI 10.1080/07474939208800229, 10.1080/07474939208800229]
[10]  
Charlier C.V.L., 1906, Arkiv fur Mathematik Astronomi och Fysik, V2, P1