A Review on Development and Applications of Bio-Inspired Superhydrophobic Textiles

被引:80
作者
Ahmad, Ishaq [1 ]
Kan, Chi-wai [1 ]
机构
[1] Hong Kong Polytech Univ, Inst Text & Clothing, Kowloon 00852, Hong Kong, Peoples R China
来源
MATERIALS | 2016年 / 9卷 / 11期
关键词
superhydrophobic textiles; self-cleaning; oil-water separation; UV-protection; contact angle; DYNAMIC CONTACT ANGLES; SUPER-HYDROPHOBIC SURFACES; SELF-CLEANING SURFACES; FREE-ENERGY ANALYSES; DROP SHAPE-ANALYSIS; ONE-STEP APPROACH; COTTON FABRICS; ADMICELLAR POLYMERIZATION; INTERFACIAL-TENSION; FLAME RETARDANCY;
D O I
10.3390/ma9110892
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Bio-inspired engineering has been envisioned in a wide array of applications. All living bodies on Earth, including animals and plants, have well organized functional systems developed by nature. These naturally designed functional systems inspire scientists and engineers worldwide to mimic the system for practical applications by human beings. Researchers in the academic world and industries have been trying, for hundreds of years, to demonstrate how these natural phenomena could be translated into the real world to save lives, money and time. One of the most fascinating natural phenomena is the resistance of living bodies to contamination by dust and other pollutants, thus termed as self-cleaning phenomenon. This phenomenon has been observed in many plants, animals and insects and is termed as the Lotus Effect. With advancement in research and technology, attention has been given to the exploration of the underlying mechanisms of water repellency and self-cleaning. As a result, various concepts have been developed including Young's equation, andWenzel and Cassie-Baxter theories. The more we unravel this process, the more we get access to its implications and applications. A similar pursuit is emphasized in this review to explain the fundamental principles, mechanisms, past experimental approaches and ongoing research in the development of bio-inspired superhydrophobic textiles.
引用
收藏
页数:34
相关论文
共 180 条
[21]   TEMPERATURE-DEPENDENCE OF CONTACT ANGLES ON ELASTOMERS [J].
BUDZIAK, CJ ;
VARGHABUTLER, EI ;
NEUMANN, AW .
JOURNAL OF APPLIED POLYMER SCIENCE, 1991, 42 (07) :1959-1964
[22]   AUTOMATION OF THE CAPILLARY RISE TECHNIQUE FOR MEASURING CONTACT ANGLES [J].
BUDZIAK, CJ ;
NEUMANN, AW .
COLLOIDS AND SURFACES, 1990, 43 (2-4) :279-293
[23]   Wetting Characteristics of Insect Wing Surfaces [J].
Byun, Doyoung ;
Hong, Jongin ;
Saputra ;
Ko, Jin Hwan ;
Lee, Young Jong ;
Park, Hoon Cheol ;
Byun, Bong-Kyu ;
Lukes, Jennifer R. .
JOURNAL OF BIONIC ENGINEERING, 2009, 6 (01) :63-70
[24]   Determination of surface tension and contact angle from the shapes of axisymmetric fluid interfaces without use of apex coordinates [J].
Cabezas, M. Guadalupe ;
Bateni, Arash ;
Montanero, Jose M. ;
Neumann, A. Wilhelm .
LANGMUIR, 2006, 22 (24) :10053-10060
[25]   A new method of image processing in the analysis of axisymmetric drop shapes [J].
Cabezas, MG ;
Bateni, A ;
Montanero, JM ;
Neumann, AW .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2005, 255 (1-3) :193-200
[26]   A new drop-shape methodology for surface tension measurement [J].
Cabezas, MG ;
Bateni, A ;
Montanero, JM ;
Neumann, AW .
APPLIED SURFACE SCIENCE, 2004, 238 (1-4) :480-484
[27]   DYNAMIC CONTACT ANGLES ON SMOOTH AND ROUGH SURFACES [J].
CAIN, JB ;
FRANCIS, DW ;
VENTER, RD ;
NEUMANN, AW .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1983, 94 (01) :123-130
[28]  
Callies M, 2005, SOFT MATTER, V1, P55, DOI 10.1039/b501657f
[29]   Wettability of porous surfaces. [J].
Cassie, ABD ;
Baxter, S .
TRANSACTIONS OF THE FARADAY SOCIETY, 1944, 40 :0546-0550
[30]   CONTACT ANGLES [J].
CASSIE, ABD .
DISCUSSIONS OF THE FARADAY SOCIETY, 1948, 3 :11-16