The ordinal Kolmogorov-Sinai entropy: A generalized approximation

被引:14
|
作者
Fouda, J. S. Armand Eyebe [1 ]
Koepf, Wolfram [2 ]
Jacquir, Sabir [3 ]
机构
[1] Univ Yaounde I, Dept Phys, Fac Sci, POB 812, Yaounde, Cameroon
[2] Univ Kassel, Inst Math, Heinrich Plett Str 40, D-34132 Kassel, Germany
[3] Univ Bourgogne Franche Comte, CNRS, UMR 6306, LE2I,Arts & Metiers, F-21000 Dijon, France
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2017年 / 46卷
关键词
Complexity; Entropy; Ordinal pattern; Ordinal array; QUASI-PERIODIC ROUTE; PERMUTATION ENTROPY; DISCRETE MAPS; CHAOS;
D O I
10.1016/j.cnsns.2016.11.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the multi-dimensional ordinal arrays complexity as a generalized approximation of the ordinal Komogorov-Sinai entropy. The ordinal arrays entropy (OAE) is defined as the Shannon entropy of a series of m-ordinal patterns encoded symbols, while the ordinal arrays complexity (OAC) is defined as the differential of the OAE with respect to m. We theoretically establish that the OAC provides a better estimate of the complexity measure for short length time series. Simulations were carried out using discrete maps, and confirm the efficiency of the OAC as complexity measure from a small data set even in a noisy environment. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:103 / 115
页数:13
相关论文
共 50 条
  • [41] Multivariate Generalized Multiscale Entropy Analysis
    Humeau-Heurtier, Anne
    ENTROPY, 2016, 18 (11)
  • [42] RELATIVE KOLMOGOROV ENTROPY OF A CHAOTIC SYSTEM IN THE PRESENCE OF NOISE
    Anishchenko, Vadim S.
    Astakhov, Sergey
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (09): : 2851 - 2855
  • [43] Generating Multivariate Ordinal Data via Entropy Principles
    Lee, Yen
    Kaplan, David
    PSYCHOMETRIKA, 2018, 83 (01) : 156 - 181
  • [44] Generating Multivariate Ordinal Data via Entropy Principles
    Yen Lee
    David Kaplan
    Psychometrika, 2018, 83 : 156 - 181
  • [45] The generalized entropy in the generalized topological spaces
    Pawlak, Ryszard J.
    Loranty, Anna
    TOPOLOGY AND ITS APPLICATIONS, 2012, 159 (07) : 1734 - 1742
  • [46] Automatic Detection of Epileptic Seizures Using Permutation Entropy, Tsallis Entropy and Kolmogorov Complexity
    Arunkumar, N.
    Kumar, K. Ram
    Venkataraman, V.
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2016, 6 (02) : 526 - 531
  • [47] Event-related desynchronization and synchronization quantification in motor-related EEG by Kolmogorov entropy
    Gao, Lin
    Wang, Jue
    Chen, Longwei
    JOURNAL OF NEURAL ENGINEERING, 2013, 10 (03)
  • [48] Entropy and co-entropy of a covering approximation space
    Zhu, Ping
    Wen, Qiaoyan
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2012, 53 (04) : 528 - 540
  • [49] Integrated Regional Enstrophy and Block Intensity as a Measure of Kolmogorov Entropy
    Jensen, Andrew D.
    Lupo, Anthony R.
    Mokhov, Igor I.
    Akperov, Mirseid G.
    Reynolds, DeVondria D.
    ATMOSPHERE, 2017, 8 (12):
  • [50] THE FOURIER SPECTRAL APPROXIMATION FOR KOLMOGOROV-SPIEGEL-SIVASHINSKY EQUATION
    Zhao, Xiaopeng
    Liu, Bo
    Zhang, Peng
    MISKOLC MATHEMATICAL NOTES, 2014, 15 (02) : 781 - 799