The ordinal Kolmogorov-Sinai entropy: A generalized approximation

被引:14
|
作者
Fouda, J. S. Armand Eyebe [1 ]
Koepf, Wolfram [2 ]
Jacquir, Sabir [3 ]
机构
[1] Univ Yaounde I, Dept Phys, Fac Sci, POB 812, Yaounde, Cameroon
[2] Univ Kassel, Inst Math, Heinrich Plett Str 40, D-34132 Kassel, Germany
[3] Univ Bourgogne Franche Comte, CNRS, UMR 6306, LE2I,Arts & Metiers, F-21000 Dijon, France
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2017年 / 46卷
关键词
Complexity; Entropy; Ordinal pattern; Ordinal array; QUASI-PERIODIC ROUTE; PERMUTATION ENTROPY; DISCRETE MAPS; CHAOS;
D O I
10.1016/j.cnsns.2016.11.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the multi-dimensional ordinal arrays complexity as a generalized approximation of the ordinal Komogorov-Sinai entropy. The ordinal arrays entropy (OAE) is defined as the Shannon entropy of a series of m-ordinal patterns encoded symbols, while the ordinal arrays complexity (OAC) is defined as the differential of the OAE with respect to m. We theoretically establish that the OAC provides a better estimate of the complexity measure for short length time series. Simulations were carried out using discrete maps, and confirm the efficiency of the OAC as complexity measure from a small data set even in a noisy environment. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:103 / 115
页数:13
相关论文
共 50 条
  • [31] Ordinal fuzzy entropy
    He, Y.
    Deng, Y.
    IRANIAN JOURNAL OF FUZZY SYSTEMS, 2022, 19 (03): : 171 - 186
  • [32] Change-Point Detection Using the Conditional Entropy of Ordinal Patterns
    Unakafov, Anton M.
    Keller, Karsten
    ENTROPY, 2018, 20 (09)
  • [33] Ordinal Patterns, Entropy, and EEG
    Keller, Karsten
    Unakafov, Anton M.
    Unakafova, Valentina A.
    ENTROPY, 2014, 16 (12) : 6212 - 6239
  • [34] ENTROPY DETERMINATION BASED ON THE ORDINAL STRUCTURE OF A DYNAMICAL SYSTEM
    Keller, Karsten
    Maksymenko, Sergiy
    Stolz, Inga
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (10): : 3507 - 3524
  • [35] Evaluating Temporal Correlations in Time Series Using Permutation Entropy, Ordinal Probabilities and Machine Learning
    Boaretto, Bruno R. R.
    Budzinski, Roberto C.
    Rossi, Kalel L.
    Prado, Thiago L.
    Lopes, Sergio R.
    Masoller, Cristina
    ENTROPY, 2021, 23 (08)
  • [36] Kolmogorov parameter for the method of entropy polarisation
    Li Zhuo
    Xing Lijuan
    ELECTRONICS LETTERS, 2017, 53 (06) : 411 - 413
  • [37] Kolmogorov Entropy for Classes of Convex Functions
    D. Dryanov
    Constructive Approximation, 2009, 30 : 137 - 153
  • [38] Considerations on the Information and Entropy of Ordinal Data
    Petrila, Iulian
    Ungureanu, Florina
    Manta, Vasile
    2014 18TH INTERNATIONAL CONFERENCE SYSTEM THEORY, CONTROL AND COMPUTING (ICSTCC), 2014, : 732 - 736
  • [39] Efficient optimal Kolmogorov approximation of random variables
    Cohen, Liat
    Grinshpoun, Tal
    Weiss, Gera
    ARTIFICIAL INTELLIGENCE, 2024, 329
  • [40] CHAOS, ENTROPY AND A GENERALIZED EXTENSION PRINCIPLE
    DIAMOND, P
    POKROVSKII, A
    FUZZY SETS AND SYSTEMS, 1994, 61 (03) : 277 - 283