The ordinal Kolmogorov-Sinai entropy: A generalized approximation

被引:14
|
作者
Fouda, J. S. Armand Eyebe [1 ]
Koepf, Wolfram [2 ]
Jacquir, Sabir [3 ]
机构
[1] Univ Yaounde I, Dept Phys, Fac Sci, POB 812, Yaounde, Cameroon
[2] Univ Kassel, Inst Math, Heinrich Plett Str 40, D-34132 Kassel, Germany
[3] Univ Bourgogne Franche Comte, CNRS, UMR 6306, LE2I,Arts & Metiers, F-21000 Dijon, France
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2017年 / 46卷
关键词
Complexity; Entropy; Ordinal pattern; Ordinal array; QUASI-PERIODIC ROUTE; PERMUTATION ENTROPY; DISCRETE MAPS; CHAOS;
D O I
10.1016/j.cnsns.2016.11.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the multi-dimensional ordinal arrays complexity as a generalized approximation of the ordinal Komogorov-Sinai entropy. The ordinal arrays entropy (OAE) is defined as the Shannon entropy of a series of m-ordinal patterns encoded symbols, while the ordinal arrays complexity (OAC) is defined as the differential of the OAE with respect to m. We theoretically establish that the OAC provides a better estimate of the complexity measure for short length time series. Simulations were carried out using discrete maps, and confirm the efficiency of the OAC as complexity measure from a small data set even in a noisy environment. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:103 / 115
页数:13
相关论文
共 50 条
  • [21] Maximum Kolmogorov-Sinai Entropy Versus Minimum Mixing Time in Markov Chains
    M. Mihelich
    B. Dubrulle
    D. Paillard
    Q. Kral
    D. Faranda
    Journal of Statistical Physics, 2018, 170 : 62 - 68
  • [22] Maximum Kolmogorov-Sinai Entropy Versus Minimum Mixing Time in Markov Chains
    Mihelich, M.
    Dubrulle, B.
    Paillard, D.
    Kral, Q.
    Faranda, D.
    JOURNAL OF STATISTICAL PHYSICS, 2018, 170 (01) : 62 - 68
  • [23] KOLMOGOROV-SINAI ENTROPY VIA SEPARATION PROPERTIES OF ORDER-GENERATED σ-ALGEBRAS
    Antoniouk, Alexandra
    Keller, Karsten
    Maksymenko, Sergiy
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (05) : 1793 - 1809
  • [24] Entropy Profiling: A Reduced-Parametric Measure of Kolmogorov-Sinai Entropy from Short-Term HRV Signal
    Karmakar, Chandan
    Udhayakumar, Radhagayathri
    Palaniswami, Marimuthu
    ENTROPY, 2020, 22 (12) : 1 - 28
  • [25] Nonlinearity of the non-Abelian lattice gauge field theory according to the spectrum of Kolmogorov-Sinai entropy and complexity
    Fulop, Agnes
    ACTA UNIVERSITATIS SAPIENTIAE INFORMATICA, 2021, 13 (02) : 373 - 400
  • [26] EQUALITY OF KOLMOGOROV-SINAI AND PERMUTATION ENTROPY FOR ONE-DIMENSIONAL MAPS CONSISTING OF COUNTABLY MANY MONOTONE PARTS
    Gutjahr, Tim
    Keller, Karsten
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (07) : 4207 - 4224
  • [27] Quantifying partition-based Kolmogorov-Sinai Entropy on Heart Rate Variability: a young vs. elderly study
    Scarciglia, Andrea
    Catrambone, Vincenzo
    Bonanno, Claudio
    Valenza, Gaetano
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 5469 - 5472
  • [28] Generalized Ordinal Patterns and the KS-Entropy
    Gutjahr, Tim
    Keller, Karsten
    ENTROPY, 2021, 23 (08)
  • [29] Conditional entropy of ordinal patterns
    Unakafov, Anton M.
    Keller, Karsten
    PHYSICA D-NONLINEAR PHENOMENA, 2014, 269 : 94 - 102
  • [30] Kolmogorov–Sinai Entropy, Lyapunov Exponents, and Mean Free Time in Billiard Systems
    P. L. Garrido
    Journal of Statistical Physics, 1997, 88 : 807 - 824