The ordinal Kolmogorov-Sinai entropy: A generalized approximation

被引:14
|
作者
Fouda, J. S. Armand Eyebe [1 ]
Koepf, Wolfram [2 ]
Jacquir, Sabir [3 ]
机构
[1] Univ Yaounde I, Dept Phys, Fac Sci, POB 812, Yaounde, Cameroon
[2] Univ Kassel, Inst Math, Heinrich Plett Str 40, D-34132 Kassel, Germany
[3] Univ Bourgogne Franche Comte, CNRS, UMR 6306, LE2I,Arts & Metiers, F-21000 Dijon, France
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2017年 / 46卷
关键词
Complexity; Entropy; Ordinal pattern; Ordinal array; QUASI-PERIODIC ROUTE; PERMUTATION ENTROPY; DISCRETE MAPS; CHAOS;
D O I
10.1016/j.cnsns.2016.11.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the multi-dimensional ordinal arrays complexity as a generalized approximation of the ordinal Komogorov-Sinai entropy. The ordinal arrays entropy (OAE) is defined as the Shannon entropy of a series of m-ordinal patterns encoded symbols, while the ordinal arrays complexity (OAC) is defined as the differential of the OAE with respect to m. We theoretically establish that the OAC provides a better estimate of the complexity measure for short length time series. Simulations were carried out using discrete maps, and confirm the efficiency of the OAC as complexity measure from a small data set even in a noisy environment. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:103 / 115
页数:13
相关论文
共 50 条
  • [11] Kolmogorov-Sinai entropy for p-preserving systems
    Khare, Mona
    Shukla, Anurag
    ADVANCES IN PURE AND APPLIED MATHEMATICS, 2018, 9 (01) : 37 - 53
  • [12] Chaos in three-body dynamics:: Kolmogorov-Sinai entropy
    Heinämäki, P
    Lehto, HJ
    Valtonen, MJ
    Chernin, AD
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1999, 310 (03) : 811 - 822
  • [13] Kolmogorov-Sinai entropy of many-body Hamiltonian systems
    Lakshminarayan, Arul
    Tomsovic, Steven
    PHYSICAL REVIEW E, 2011, 84 (01):
  • [14] Detrended fluctuation analysis and Kolmogorov-Sinai entropy of electroencephalogram signals
    Lim, Jung Ho
    Khang, Eun Joo
    Lee, Tae Hyun
    Kim, In Hye
    Maeng, Seong Eun
    Lee, Jae Woo
    PHYSICS LETTERS A, 2013, 377 (38) : 2542 - 2545
  • [15] The Kolmogorov-Sinai entropy in the setting of fuzzy sets for image texture analysis and classification
    Pham, Tuan D.
    PATTERN RECOGNITION, 2016, 53 : 229 - 237
  • [16] Kolmogorov-Sinai entropy in field line diffusion by anisotropic magnetic turbulence
    Milovanov, Alexander V.
    Bitane, Rehab
    Zimbardo, Gaetano
    PLASMA PHYSICS AND CONTROLLED FUSION, 2009, 51 (07)
  • [17] A Multiscale Partition-Based Kolmogorov-Sinai Entropy for the Complexity Assessment of Heartbeat Dynamics
    Scarciglia, Andrea
    Catrambone, Vincenzo
    Bonanno, Claudio
    Valenza, Gaetano
    BIOENGINEERING-BASEL, 2022, 9 (02):
  • [18] Estimating Kolmogorov-Sinai entropy from time series of high-dimensional complex systems
    Shiozawa, Kota
    Tokuda, Isao T.
    PHYSICS LETTERS A, 2024, 510
  • [19] Classification of complex biological aging images using fuzzy Kolmogorov-Sinai entropy
    Pham, Tuan D.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2014, 47 (48)
  • [20] Kolmogorov-Sinai entropy, Lyapunov exponents, and mean free time in billiard systems
    Garrido, PL
    JOURNAL OF STATISTICAL PHYSICS, 1997, 88 (3-4) : 807 - 824