The ordinal Kolmogorov-Sinai entropy: A generalized approximation

被引:14
|
作者
Fouda, J. S. Armand Eyebe [1 ]
Koepf, Wolfram [2 ]
Jacquir, Sabir [3 ]
机构
[1] Univ Yaounde I, Dept Phys, Fac Sci, POB 812, Yaounde, Cameroon
[2] Univ Kassel, Inst Math, Heinrich Plett Str 40, D-34132 Kassel, Germany
[3] Univ Bourgogne Franche Comte, CNRS, UMR 6306, LE2I,Arts & Metiers, F-21000 Dijon, France
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2017年 / 46卷
关键词
Complexity; Entropy; Ordinal pattern; Ordinal array; QUASI-PERIODIC ROUTE; PERMUTATION ENTROPY; DISCRETE MAPS; CHAOS;
D O I
10.1016/j.cnsns.2016.11.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the multi-dimensional ordinal arrays complexity as a generalized approximation of the ordinal Komogorov-Sinai entropy. The ordinal arrays entropy (OAE) is defined as the Shannon entropy of a series of m-ordinal patterns encoded symbols, while the ordinal arrays complexity (OAC) is defined as the differential of the OAE with respect to m. We theoretically establish that the OAC provides a better estimate of the complexity measure for short length time series. Simulations were carried out using discrete maps, and confirm the efficiency of the OAC as complexity measure from a small data set even in a noisy environment. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:103 / 115
页数:13
相关论文
共 50 条
  • [1] Kolmogorov-Sinai entropy from the ordinal viewpoint
    Keller, Karsten
    Sinn, Mathieu
    PHYSICA D-NONLINEAR PHENOMENA, 2010, 239 (12) : 997 - 1000
  • [2] Ordinal Pattern Based Entropies and the Kolmogorov-Sinai Entropy: An Update
    Gutjahr, Tim
    Keller, Karsten
    ENTROPY, 2020, 22 (01) : 63
  • [3] The equality of Kolmogorov-Sinai entropy and metric permutation entropy generalized
    Amigo, Jose M.
    PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (07) : 789 - 793
  • [4] PERMUTATIONS AND THE KOLMOGOROV-SINAI ENTROPY
    Keller, Karsten
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2012, 32 (03) : 891 - 900
  • [5] WEIGHTED ENTROPY FUNCTION AS AN EXTENSION OF THE KOLMOGOROV-SINAI ENTROPY
    Mohammadi, Uosef
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2015, 77 (04): : 117 - 122
  • [6] An approach to comparing Kolmogorov-Sinai and permutation entropy
    Unakafova, V. A.
    Unakafov, A. M.
    Keller, K.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2013, 222 (02) : 353 - 361
  • [7] Quantum Kolmogorov-Sinai entropy and Pesin relation
    Goldfriend, Tomer
    Kurchan, Jorge
    PHYSICAL REVIEW RESEARCH, 2021, 3 (02):
  • [8] An approach to comparing Kolmogorov-Sinai and permutation entropy
    V.A. Unakafova
    A.M. Unakafov
    K. Keller
    The European Physical Journal Special Topics, 2013, 222 : 353 - 361
  • [9] A General Symbolic Approach to Kolmogorov-Sinai Entropy
    Stolz, Inga
    Keller, Karsten
    ENTROPY, 2017, 19 (12):
  • [10] Linear growth of the entanglement entropy and the Kolmogorov-Sinai rate
    Bianchi, Eugenio
    Hackl, Lucas
    Yokomizo, Nelson
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (03):