A Randomized Incremental Algorithm for the Hausdorff Voronoi Diagram of Non-crossing Clusters

被引:4
作者
Cheilaris, Panagiotis [1 ]
Khramtcova, Elena [1 ]
Langerman, Stefan [2 ]
Papadopoulou, Evanthia [1 ]
机构
[1] Univ Svizzera Italiana, Fac Informat, Lugano, Switzerland
[2] Univ Libre Bruxelles, Dept Informat, Brussels, Belgium
关键词
Voronoi diagram; Hausdorff distance; Randomized incremental construction; Point location; Hierarchical data structure; UPPER ENVELOPE; VLSI CIRCUITS; LOCATION; OBJECTS; PLANE;
D O I
10.1007/s00453-016-0118-y
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In the Hausdorff Voronoi diagram of a family of clusters of points in the plane, the distance between a point t and a cluster P is measured as the maximum distance between t and any point in P, and the diagram is defined in a nearest-neighbor sense for the input clusters. In this paper we consider non-crossing clusters in the plane, for which the combinatorial complexity of the Hausdorff Voronoi diagram is linear in the total number of points, n, on the convex hulls of all clusters. We present a randomized incremental construction, based on point location, that computes this diagram in expected time and expected O(n) space. Our techniques efficiently handle non-standard characteristics of generalized Voronoi diagrams, such as sites of non-constant complexity, sites that are not enclosed in their Voronoi regions, and empty Voronoi regions. The diagram finds direct applications in VLSI computer-aided design.
引用
收藏
页码:935 / 960
页数:26
相关论文
共 28 条
[1]   A combinatorial property of convex sets [J].
Abellanas, M ;
Hernandez, G ;
Klein, R ;
NeumannLara, V ;
Urrutia, J .
DISCRETE & COMPUTATIONAL GEOMETRY, 1997, 17 (03) :307-318
[2]  
ABELLANAS M, 2001, P 17 EUR WORKSH COMP, P113
[3]  
[Anonymous], 2006, Effective Computational Geometry for Curves and Surfaces, DOI [10.1007/978-3-540-33259-6_2, DOI 10.1007/978-3-540-33259-6_2, DOI 10.1007/978-3-540-33259-6-2]
[4]  
Arge L, 2006, ANN IEEE SYMP FOUND, P305
[5]  
ARONOV B, 2006, P 7 LAT AM S THEOR I, P80
[6]  
Aurenhammer F., 2013, Voronoi diagrams and Delaunay triangulations, V8
[7]   DYNAMIC POINT LOCATION IN GENERAL SUBDIVISIONS [J].
BAUMGARTEN, N ;
JUNG, H ;
MEHLHORN, K .
JOURNAL OF ALGORITHMS, 1994, 17 (03) :342-380
[8]   Farthest-polygon Voronoi diagrams [J].
Cheong, Otfried ;
Everett, Hazel ;
Glisse, Marc ;
Gudmundsson, Joachim ;
Hornus, Samuel ;
Lazard, Sylvain ;
Lee, Mira ;
Na, Hyeon-Suk .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2011, 44 (04) :234-247
[9]   APPLICATIONS OF RANDOM SAMPLING IN COMPUTATIONAL GEOMETRY .2. [J].
CLARKSON, KL ;
SHOR, PW .
DISCRETE & COMPUTATIONAL GEOMETRY, 1989, 4 (05) :387-421
[10]   A coarse grained parallel algorithm for Hausdorff Voronoi diagrams [J].
Dehne, Frank ;
Maheshwari, Anil ;
Taylor, Ryan .
2006 INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING, PROCEEDINGS, 2006, :497-504