Experimental High-Dimensional Greenberger-Horne-Zeilinger Entanglement with Superconducting Transmon Qutrits

被引:74
作者
Cervera-Lierta, Alba [1 ,2 ,7 ]
Krenn, Mario [1 ,2 ,3 ,8 ]
Aspuru-Guzik, Alan [1 ,2 ,3 ]
Galda, Alexey [4 ,5 ,6 ]
机构
[1] Univ Toronto, Dept Chem, Chem Phys Theory Grp, Toronto, ON M5S 3H6, Canada
[2] Univ Toronto, Dept Comp Sci, Toronto, ON M5T 3A1, Canada
[3] Vector Inst Arterial Intelligence, Toronto, ON M5G 1M1, Canada
[4] Menten AI Inc, San Francisco, CA 94111 USA
[5] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA
[6] Argonne Natl Lab, Computat Sci Div, Lemont, IL 60439 USA
[7] Barcelona Supercomp Ctr, Barcelona 08034, Spain
[8] Max Planck Inst Sci Light MPL, D-91058 Erlangen, Germany
基金
奥地利科学基金会;
关键词
SCHRODINGER CAT STATES; QUANTUM; GENERATION;
D O I
10.1103/PhysRevApplied.17.024062
中图分类号
O59 [应用物理学];
学科分类号
摘要
Multipartite entanglement is one of the core concepts in quantum information science with broad applications that span from condensed matter physics to quantum physics foundation tests. Although its most studied and tested forms encompass two-dimensional systems, current quantum platforms technically allow the manipulation of additional quantum levels. We report the experimental demonstration and certification of a high-dimensional multipartite entangled state in a superconducting quantum processor. We generate the three-qutrit Greenberger-Horne-Zeilinger state by designing the necessary pulses to perform high-dimensional quantum operations. We obtain the fidelity of 76% +/- 1%, proving the generation of a genuine three-partite and three-dimensional entangled state. To this date, only photonic devices have been able to create and certify the entanglement of these high-dimensional states. Our work demonstrates that another platform, superconducting systems, is ready to exploit genuine high-dimensional entanglement and that a programmable quantum device accessed on the cloud can be used to design and execute experiments beyond binary quantum computation.
引用
收藏
页数:16
相关论文
共 74 条
[1]   Experimental realization of non-Abelian non-adiabatic geometric gates [J].
Abdumalikov, A. A., Jr. ;
Fink, J. M. ;
Juliusson, K. ;
Pechal, M. ;
Berger, S. ;
Wallraff, A. ;
Filipp, S. .
NATURE, 2013, 496 (7446) :482-485
[2]   Electromagnetically Induced Transparency on a Single Artificial Atom [J].
Abdumalikov, A. A., Jr. ;
Astafiev, O. ;
Zagoskin, A. M. ;
Pashkin, Yu. A. ;
Nakamura, Y. ;
Tsai, J. S. .
PHYSICAL REVIEW LETTERS, 2010, 104 (19)
[3]   Coincidence Bell inequality for three three-dimensional systems -: art. no. 250404 [J].
Acín, A ;
Chen, JL ;
Gisin, N ;
Kaszlikowski, D ;
Kwek, LC ;
Oh, CH ;
Zukowski, M .
PHYSICAL REVIEW LETTERS, 2004, 92 (25) :250404-1
[4]   Qiskit pulse: programming quantum computers through the cloud with pulses [J].
Alexander, Thomas ;
Kanazawa, Naoki ;
Egger, Daniel J. ;
Capelluto, Lauren ;
Wood, Christopher J. ;
Javadi-Abhari, Ali ;
McKay, David C. .
QUANTUM SCIENCE AND TECHNOLOGY, 2020, 5 (04)
[5]   Operational approach to Bell inequalities: Application to qutrits [J].
Alsina, Daniel ;
Cervera, Alba ;
Goyeneche, Dardo ;
Latorre, Jose I. ;
Zyczkowski, Karol .
PHYSICAL REVIEW A, 2016, 94 (03)
[6]  
[Anonymous], 2021, IBM quantum
[7]   Software tools for quantum control: improving quantum computer performance through noise and error suppression [J].
Ball, Harrison ;
Biercuk, Michael J. ;
Carvalho, Andre R. R. ;
Chen, Jiayin ;
Hush, Michael ;
De Castro, Leonardo A. ;
Li, Li ;
Liebermann, Per J. ;
Slatyer, Harry J. ;
Edmunds, Claire ;
Frey, Virginia ;
Hempel, Cornelius ;
Milne, Alistair .
QUANTUM SCIENCE AND TECHNOLOGY, 2021, 6 (04)
[8]   Measurements in two bases are sufficient for certifying high-dimensional entanglement [J].
Bavaresco, Jessica ;
Valencia, Natalia Herrera ;
Kloeckl, Claude ;
Pivoluska, Matej ;
Erker, Paul ;
Friis, Nicolai ;
Malik, Mehul ;
Huber, Marcus .
NATURE PHYSICS, 2018, 14 (10) :1032-+
[9]  
Bengtsson I., 2017, Geometry of quantum states: an introduction to quantum entanglement, DOI DOI 10.1007/s10107-002-0352-8
[10]   Control and Tomography of a Three Level Superconducting Artificial Atom [J].
Bianchetti, R. ;
Filipp, S. ;
Baur, M. ;
Fink, J. M. ;
Lang, C. ;
Steffen, L. ;
Boissonneault, M. ;
Blais, A. ;
Wallraff, A. .
PHYSICAL REVIEW LETTERS, 2010, 105 (22)