Modelling how social network algorithms can influence opinion polarization

被引:39
作者
de Arruda, Henrique F. R. [1 ,2 ]
Cardoso, Felipe M. [1 ]
de Arruda, Guilherme F. [3 ]
Hernandez, Alexis R. [4 ]
Costa, Luciano da F. [4 ]
Moreno, Yamir [1 ,3 ,5 ]
机构
[1] Univ Zaragoza, Inst Biocomputat & Phys Complex Syst BIFI, Zaragoza, Spain
[2] Univ Sao Paulo, Sao Carlos Inst Phys, Sao Carlos, SP, Brazil
[3] ISI Fdn, Turin, Italy
[4] Rio de Janeiro Fed Univ, Inst Phys, Rio De Janeiro, RJ, Brazil
[5] Univ Zaragoza, Dept Theoret Phys, Fac Sci, Zaragoza, Spain
基金
巴西圣保罗研究基金会;
关键词
Network science; Social network; Opinion polarization; Echo chamber; PROPAGATION; DYNAMICS;
D O I
10.1016/j.ins.2021.12.069
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The study of the dynamics of opinion formation and transmission in social networks has attracted lots of attention. Here, we propose a model that simulates communication in an online social network, in which randomly created posts represent external information. We consider users and friendship relations to be encoded as nodes and edges of a network. The dynamic of information diffusion is divided into two processes, referred to as post transmission and post distribution, representing the users' behavior and the social network algorithm, respectively. Individuals also interact with the post content by slightly adjusting their own opinion and sometimes redefining friendships. Our results show that the dynamic converge to various scenarios, which go from consensus formation to polariza-tion. Importantly, friendship rewiring helps promote echo chamber formation, which can also arise for particular networks with well-defined community structures. Altogether, our results indicate that the social network algorithm is crucial to mitigate or promote polarization. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:265 / 278
页数:14
相关论文
共 46 条
[1]  
[Anonymous], 2016, ECHO CHAMBERS FACEBO
[2]   Exposure to opposing views on social media can increase political polarization [J].
Bail, Christopher A. ;
Argyle, Lisa P. ;
Brown, Taylor W. ;
Bumpus, John P. ;
Chen, Haohan ;
Hunzaker, M. B. Fallin ;
Lee, Jaemin ;
Mann, Marcus ;
Merhout, Friedolin ;
Volfovsky, Alexander .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (37) :9216-9221
[3]   Emergence of Polarized Ideological Opinions in Multidimensional Topic Spaces [J].
Baumann, Fabian ;
Lorenz-Spreen, Philipp ;
Sokolov, Igor M. ;
Starnini, Michele .
PHYSICAL REVIEW X, 2021, 11 (01)
[4]   Modeling Echo Chambers and Polarization Dynamics in Social Networks [J].
Baumann, Fabian ;
Lorenz-Spreen, Philipp ;
Sokolov, Igor M. ;
Starnini, Michele .
PHYSICAL REVIEW LETTERS, 2020, 124 (04)
[5]   Opinion diversity and social bubbles in adaptive Sznajd networks [J].
Benatti, Alexandre ;
de Arruda, Henrique F. ;
Silva, Filipi Nascimento ;
Comin, Cesar Henrique ;
Costa, Luciano da Fontoura .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2020, 2020 (02)
[6]   Positive algorithmic bias cannot stop fragmentation in homophilic networks [J].
Blex, Chris ;
Yasseri, Taha .
JOURNAL OF MATHEMATICAL SOCIOLOGY, 2022, 46 (01) :80-97
[7]   Statistical physics of social dynamics [J].
Castellano, Claudio ;
Fortunato, Santo ;
Loreto, Vittorio .
REVIEWS OF MODERN PHYSICS, 2009, 81 (02) :591-646
[8]   The echo chamber effect on social media [J].
Cinelli, Matteo ;
Morales, Gianmarco De Francisci ;
Galeazzi, Alessandro ;
Quattrociocchi, Walter ;
Starnini, Michele .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (09)
[9]   Selective exposure shapes the Facebook news diet [J].
Cinelli, Matteo ;
Brugnoli, Emanuele ;
Schmidt, Ana Lucia ;
Zollo, Fabiana ;
Quattrociocchi, Walter ;
Scala, Antonio .
PLOS ONE, 2020, 15 (03)
[10]   Quantifying echo chamber effects in information spreading over political communication networks [J].
Cota, Wesley ;
Ferreira, Silvio C. ;
Pastor-Satorras, Romualdo ;
Starnini, Michele .
EPJ DATA SCIENCE, 2019, 8 (01)