Quantum interference of identical photons from remote GaAs quantum dots

被引:102
作者
Zhai, Liang [1 ]
Nguyen, Giang N. [1 ]
Spinnler, Clemens [1 ]
Ritzmann, Julian [2 ]
Loebl, Matthias C. [1 ]
Wieck, Andreas D. [2 ]
Ludwig, Arne [2 ]
Javadi, Alisa [1 ]
Warburton, Richard J. [1 ]
机构
[1] Univ Basel, Dept Phys, Basel, Switzerland
[2] Ruhr Univ Bochum, Lehrstuhl Angew Festkorperphys, Bochum, Germany
基金
瑞士国家科学基金会;
关键词
ENTANGLEMENT;
D O I
10.1038/s41565-022-01131-2
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Photonic quantum technology provides a viable route to quantum communication(1,2), quantum simulation(3) and quantum information processing(4). Recent progress has seen the realization of boson sampling using 20 single photons(3) and quantum key distribution over hundreds of kilometres(2). Scaling the complexity requires architectures containing multiple photon sources, photon counters and a large number of indistinguishable single photons. Semiconductor quantum dots are bright and fast sources of coherent single photons(5-9). For applications, a roadblock is the poor quantum coherence on interfering single photons created by independent quantum dots(10,11). Here we demonstrate two-photon interference with near-unity visibility (93.0 +/- 0.8)% using photons from two completely separate GaAs quantum dots. The experiment retains all the emission into the zero phonon line-only the weak phonon sideband is rejected; temporal post-selection is not employed. By exploiting quantum interference, we demonstrate a photonic controlled-not circuit and an entanglement with fidelity of (85.0 +/- 1.0)% between photons of different origins. The two-photon interference visibility is high enough that the entanglement fidelity is well above the classical threshold. The high mutual coherence of the photons stems from high-quality materials, diode structure and relatively large quantum dot size. Our results establish a platform-GaAs quantum dots-for creating coherent single photons in a scalable way.
引用
收藏
页码:829 / +
页数:14
相关论文
共 51 条
[1]   Photonic state tomography [J].
Altepeter, JB ;
Jeffrey, ER ;
Kwiat, PG .
ADVANCES IN ATOMIC MOLECULAR AND OPTICAL PHYSICS, VOL 52, 2005, 52 :105-159
[2]   Quantum key distribution with entangled photons generated on demand by a quantum dot [J].
Basset, Francesco Basso ;
Valeri, Mauro ;
Roccia, Emanuele ;
Muredda, Valerio ;
Poderini, Davide ;
Neuwirth, Julia ;
Spagnolo, Nicolo ;
Rota, Michele B. ;
Carvacho, Gonzalo ;
Sciarrino, Fabio ;
Trotta, Rinaldo .
SCIENCE ADVANCES, 2021, 7 (12)
[3]   Heralded entanglement between solid-state qubits separated by three metres [J].
Bernien, H. ;
Hensen, B. ;
Pfaff, W. ;
Koolstra, G. ;
Blok, M. S. ;
Robledo, L. ;
Taminiau, T. H. ;
Markham, M. ;
Twitchen, D. J. ;
Childress, L. ;
Hanson, R. .
NATURE, 2013, 497 (7447) :86-90
[4]   Quantum interference between two single photons emitted by independently trapped atoms [J].
Beugnon, J ;
Jones, MPA ;
Dingjan, J ;
Darquié, B ;
Messin, G ;
Browaeys, A ;
Grangier, P .
NATURE, 2006, 440 (7085) :779-782
[5]  
Cogan D., PREPRINT
[6]  
Fischer KA, 2017, NAT PHYS, V13, P649, DOI [10.1038/NPHYS4052, 10.1038/nphys4052]
[7]   Cavity-enhanced two-photon interference using remote quantum dot sources [J].
Giesz, V. ;
Portalupi, S. L. ;
Grange, T. ;
Anton, C. ;
De Santis, L. ;
Demory, J. ;
Somaschi, N. ;
Sagnes, I. ;
Lemaitre, A. ;
Lanco, L. ;
Auffeves, A. ;
Senellart, P. .
PHYSICAL REVIEW B, 2015, 92 (16)
[8]   Scalable in operando strain tuning in nanophotonic waveguides enabling three-quantum-dot superradiance [J].
Grim, Joel Q. ;
Bracker, Allan S. ;
Zalalutdinov, Maxim ;
Carter, Samuel G. ;
Kozen, Alexander C. ;
Kim, Mijin ;
Kim, Chul Soo ;
Mlack, Jerome T. ;
Yakes, Michael ;
Lee, Bumsu ;
Gammon, Daniel .
NATURE MATERIALS, 2019, 18 (09) :963-+
[9]   Droplet epitaxy of semiconductor nanostructures for quantum photonic devices [J].
Gurioli, Massimo ;
Wang, Zhiming ;
Rastelli, Armando ;
Kuroda, Takashi ;
Sanguinetti, Stefano .
NATURE MATERIALS, 2019, 18 (08) :799-810
[10]   Indistinguishable Tunable Single Photons Emitted by Spin-Flip Raman Transitions in InGaAs Quantum Dots [J].
He, Yu ;
He, Yu-Ming ;
Wei, Y. -J. ;
Jiang, X. ;
Chen, M. -C. ;
Xiong, F. -L. ;
Zhao, Y. ;
Schneider, Christian ;
Kamp, Martin ;
Hoefling, Sven ;
Lu, Chao-Yang ;
Pan, Jian-Wei .
PHYSICAL REVIEW LETTERS, 2013, 111 (23)