Dihedral Multi-Reference Alignment

被引:11
作者
Bendory, Tamir [1 ]
Edidin, Dan [2 ]
Leeb, William [3 ]
Sharon, Nir [4 ]
机构
[1] Tel Aviv Univ, Sch Elect Engn, IL-69978 Tel Aviv, Israel
[2] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[3] Univ Minnesota Twin Cities, Sch Math, Minneapolis, MN 55455 USA
[4] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
基金
以色列科学基金会;
关键词
Orbits; Estimation; Noise level; Complexity theory; Signal to noise ratio; Probability distribution; Discrete Fourier transforms; Multi-reference alignment; the method of moments; group synchronization; expectation-maximization; CRYO-EM; MAXIMUM-LIKELIHOOD; SAMPLE COMPLEXITY; SYNCHRONIZATION; EIGENVECTORS; LIMITS;
D O I
10.1109/TIT.2022.3146488
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study the dihedral multi-reference alignment problem of estimating the orbit of a signal from multiple noisy observations of the signal, acted on by random elements of the dihedral group. We show that if the group elements are drawn from a generic distribution, the orbit of a generic signal is uniquely determined from the second moment of the observations. This implies that the optimal estimation rate in the high noise regime is proportional to the square of the variance of the noise. This is the first result of this type for multi-reference alignment over a non-abelian group with a non-uniform distribution of group elements. Based on tools from invariant theory and algebraic geometry, we also delineate conditions for unique orbit recovery for multi-reference alignment models over finite groups (namely, when the dihedral group is replaced by a general finite group) when the group elements are drawn from a generic distribution. Finally, we design and study numerically three computational frameworks for estimating the signal based on group synchronization, expectation-maximization, and the method of moments.
引用
收藏
页码:3489 / 3499
页数:11
相关论文
共 51 条
[1]  
Abas A., ARXIV210302215, V2021
[2]   Multireference Alignment Is Easier With an Aperiodic Translation Distribution [J].
Abbe, Emmanuel ;
Bendory, Tamir ;
Leeb, William ;
Pereira, Joao M. ;
Sharon, Nir ;
Singer, Amit .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (06) :3565-3584
[3]  
Abbe E, 2018, IEEE INT SYMP INFO, P561, DOI 10.1109/ISIT.2018.8437646
[4]  
Abbe E, 2017, IEEE INT SYMP INFO, P1316, DOI 10.1109/ISIT.2017.8006742
[5]   Fundamental Limits in Multi-Image Alignment [J].
Aguerrebere, Cecilia ;
Delbracio, Mauricio ;
Bartesaghi, Alberto ;
Sapiro, Guillermo .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2016, 64 (21) :5707-5722
[6]   Rank-one multi-reference factor analysis [J].
Aizenbud, Yariv ;
Landa, Boris ;
Shkolnisky, Yoel .
STATISTICS AND COMPUTING, 2021, 31 (01)
[7]  
[Anonymous], 2014, P 5 C INNOVATIONS TH
[8]  
[Anonymous], 1977, GRADUATE TEXTS MATH, DOI DOI 10.1007/978-1-4684-9458-7.877
[9]   Non-uniformity of projection distributions attenuates resolution in Cryo-EM [J].
Baldwin, Philip R. ;
Lyumkis, Dmitry .
PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2020, 150 :160-183
[10]  
BANDEIRA A. S., 2019, MATH STAT LEARN, V2, P25, DOI 10.4171/msl/11