Prognostic Kalman Filter Based Bayesian Learning Model for Data Accuracy Prediction

被引:15
作者
Karthik, S. [1 ]
Bhadoria, Robin Singh [2 ]
Lee, Jeong Gon [3 ]
Sivaraman, Arun Kumar [4 ]
Samanta, Sovan [5 ]
Balasundaram, A. [6 ]
Chaurasia, Brijesh Kumar [7 ]
Ashokkumar, S. [8 ]
机构
[1] SRM Inst Sci & Technol, Coll Engn & Technol, Dept ECE, Chennai 600026, Tamil Nadu, India
[2] Birla Inst Appl Sci BIAS, Dept CSE, Bhimtal 263136, Uttarakhand, India
[3] Wonkwang Univ, Div Appl Math, 460 Iksan Daero, Iksan Si 54538, Jeonbuk, South Korea
[4] Vellore Inst Technol VIT, Sch Comp Sci & Engn, Chennai 600127, Tamil Nadu, India
[5] Tamralipta Mahavidyalaya, Dept Math, Tamluk 721636, W Bengal, India
[6] Vellore Inst Technol VIT, Sch Comp Sci & Engn, Ctr Cyber Phys Syst, Chennai 600127, Tamil Nadu, India
[7] Indian Inst Informat Technol IIIT, Lucknow 226002, Uttar Pradesh, India
[8] SIMATS, Dept Comp Sci & Engn, Saveetha Sch Engn, Chennai 602105, Tamil Nadu, India
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2022年 / 72卷 / 01期
关键词
Bayesian learning model; kalman filter; machine learning; data accuracy prediction; CLUSTERING-ALGORITHM; MACHINE; CLASSIFICATION; GRAPHS;
D O I
10.32604/cmc.2022.023864
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Data is always a crucial issue of concern especially during its prediction and computation in digital revolution. This paper exactly helps in providing efficient learning mechanism for accurate predictability and reducing redundant data communication. It also discusses the Bayesian analysis that finds the conditional probability of at least two parametric based predictions for the data. The paper presents a method for improving the performance of Bayesian classification using the combination of Kalman Filter and K-means. The method is applied on a small dataset just for establishing the fact that the proposed algorithm can reduce the time for computing the clusters from data. The proposed Bayesian learning probabilistic model is used to check the statistical noise and other inaccuracies using unknown variables. This scenario is being implemented using efficient machine learning algorithm to perpetuate the Bayesian probabilistic approach. It also demonstrates the generative function for Kalman-filer based prediction model and its observations. This paper implements the algorithm using open source platform of Python and efficiently integrates all different modules to piece of code via Common Platform Enumeration (CPE) for Python.
引用
收藏
页码:243 / 259
页数:17
相关论文
共 56 条
[1]   A k-mean clustering algorithm for mixed numeric and categorical data [J].
Ahmad, Amir ;
Dey, Lipika .
DATA & KNOWLEDGE ENGINEERING, 2007, 63 (02) :503-527
[2]  
Arunachalam P., 2021, INTELL AUTOSOFT COMP, V32, P1241
[3]   Abnormality Identification in Video Surveillance System using DCT [J].
Balasundaram, A. ;
Dilip, Golda ;
Manickam, M. ;
Sivaraman, Arun Kumar ;
Gurunathan, K. ;
Dhanalakshmi, R. ;
Ashokkumar, S. .
INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 32 (02) :693-704
[4]  
Balasundaram A., 2021, INT C SYSTEM COMPUTA, P1
[5]  
Bansal A., 2017, ARTIC INT J COMPUT A, V157, P975, DOI 10.5120/ijca2017912719
[6]   Bayesian Analysis in Partially Accelerated Life Tests for Weighted Lomax Distribution [J].
Bantan, Rashad ;
Hassan, Amal S. ;
Almetwally, Ehab ;
Elgarhy, M. ;
Jamal, Farrukh ;
Chesneau, Christophe ;
Elsehetry, Mahmoud .
CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 68 (03) :2859-2875
[7]  
Benavoli A, 2017, J MACH LEARN RES, V18
[8]   Learning Deep Architectures for AI [J].
Bengio, Yoshua .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2009, 2 (01) :1-127
[9]  
Bhargava A., 2015, 2015 IEEE SECTION C, P1
[10]   Quantum machine learning [J].
Biamonte, Jacob ;
Wittek, Peter ;
Pancotti, Nicola ;
Rebentrost, Patrick ;
Wiebe, Nathan ;
Lloyd, Seth .
NATURE, 2017, 549 (7671) :195-202