Automorphic forms and Lorentzian Kac-Moody algebras. Part II

被引:97
作者
Gritsenko, VA
Nikulin, VV
机构
[1] VA Steklov Math Inst, St Petersburg Dept, St Petersburg 191011, Russia
[2] VA Steklov Math Inst, Moscow 117966, Russia
关键词
D O I
10.1142/S0129167X98000117
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give variants of lifting construction, which define new classes of modular forms on the Siegel upper half-space of complex dimension 3 with respect to the full paramodular groups (defining moduli of Abelian surfaces with arbitrary polarization). The data for these liftings are Jacobi forms of integral and half-integral indices. In particular, we get modular forms which are generalizations of the Dedekind eta-function. Some of these forms define automorphic corrections of Lorentzian Kac-Moody algebras with hyperbolic generalized Cartan matrices of rank three classified in Part I of this paper. We also construct many automorphic forms which give discriminants of moduli of K3 surfaces with conditions on Picard lattice.
引用
收藏
页码:201 / 275
页数:75
相关论文
共 46 条
[1]  
[Anonymous], 1991, J SOVIET MATH, DOI 10.1007/BF01303648
[2]  
[Anonymous], 1996, J MATH SCI NY
[3]  
[Anonymous], 1990, MATH USSR SB, V65, P333, DOI DOI 10.1070/SM1990V065N02ABEH001145
[4]   GENERALIZED KAC-MOODY ALGEBRAS [J].
BORCHERDS, R .
JOURNAL OF ALGEBRA, 1988, 115 (02) :501-512
[5]   THE MONSTER LIE-ALGEBRA [J].
BORCHERDS, RE .
ADVANCES IN MATHEMATICS, 1990, 83 (01) :30-47
[6]   MONSTROUS MOONSHINE AND MONSTROUS LIE-SUPERALGEBRAS [J].
BORCHERDS, RE .
INVENTIONES MATHEMATICAE, 1992, 109 (02) :405-444
[7]   The moduli space of Enriques surfaces and the fake monster Lie superalgebra [J].
Borcherds, RE .
TOPOLOGY, 1996, 35 (03) :699-710
[8]   AUTOMORPHIC-FORMS ON O-S+2,O-2(R) AND INFINITE PRODUCTS [J].
BORCHERDS, RE .
INVENTIONES MATHEMATICAE, 1995, 120 (01) :161-213
[9]   Counting dyons in N=4 string theory [J].
Dijkgraaf, R ;
Verlinde, E ;
Verlinde, H .
NUCLEAR PHYSICS B, 1997, 484 (03) :543-561
[10]   A HYPERBOLIC KAC-MOODY ALGEBRA AND THE THEORY OF SIEGEL MODULAR-FORMS OF GENUS-2 [J].
FEINGOLD, AJ ;
FRENKEL, IB .
MATHEMATISCHE ANNALEN, 1983, 263 (01) :87-144