Compositional analysis of oxide-embedded III-V nanostructures

被引:0
|
作者
Ek, Martin [1 ,2 ]
Petersson, C. Leon M. [3 ]
Wallentin, Jesper [2 ,4 ]
Wahlqvist, David [1 ,2 ]
Ahadi, Aylin [2 ,3 ]
Borgstrom, Magnus [2 ,5 ]
Wallenberg, Reine [1 ,2 ]
机构
[1] Lund Univ, Ctr Anal & Synth, Box 124, SE-22100 Lund, Sweden
[2] Lund Univ, NanoLund, Box 118, SE-22100 Lund, Sweden
[3] Lund Univ, LTH, Div Mech, Box 118, SE-22100 Lund, Sweden
[4] Lund Univ, Synchrotron Radiat Res, Box 118, SE-22100 Lund, Sweden
[5] Lund Univ, Solid State Phys, Box 118, SE-22100 Lund, Sweden
基金
欧洲研究理事会; 瑞典研究理事会;
关键词
III-V materials; transmission electron microscopy; EELS; strain; STRAIN FIELDS; QUANTUM DOTS; CORE-SHELL; NANOWIRES; HETEROJUNCTIONS; DISPLACEMENT; GROWTH;
D O I
10.1088/1361-6528/ac75fa
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Nanowire growth enables creation of embedded heterostructures, where one material is completely surrounded by another. Through materials-selective post-growth oxidation it is also possible to combine amorphous oxides and crystalline, e.g. III-V materials. Such oxide-embedded structures pose a challenge for compositional characterization through transmission electron microscopy since the materials will overlap in projection. Furthermore, materials electrically isolated by an embedding oxide are more sensitive to electron beam-induced alterations. Methods that can directly isolate the embedded material, preferably at reduced electron doses, will be required in this situation. Here, we analyse the performance of two such techniques-local lattice parameter measurements from high resolution micrographs and bulk plasmon energy measurements from electron energy loss spectra-by applying them to analyse InP-AlInP segments embedded in amorphous aluminium oxide. We demonstrate the complementarity of the two methods, which show an overall excellent agreement. However, in regions with residual strain, which we analyse through molecular dynamics simulations, the two techniques diverge from the true value in opposite directions.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Nucleation-Dependent Surface Diffusion in Anisotropic Growth of III-V Nanostructures
    Dubrovskii, Vladimir G.
    CRYSTAL GROWTH & DESIGN, 2024, 24 (15) : 6450 - 6462
  • [22] Theory of diffusion-induced selective area growth of III-V nanostructures
    Dubrovskii, Vladimir G.
    PHYSICAL REVIEW MATERIALS, 2023, 7 (02)
  • [23] Microscopic Understanding of the Growth and Structural Evolution of Narrow Bandgap III-V Nanostructures
    Zhang, Leilei
    Li, Xing
    Cheng, Shaobo
    Shan, Chongxin
    MATERIALS, 2022, 15 (05)
  • [24] Fermi-Level Pinning in ErAs Nanoparticles Embedded in III-V Semiconductors
    Hu, Ruiqi
    Ho, Dai Q.
    To, D. Quang
    Bryant, Garnett W.
    Janotti, Anderson
    NANO LETTERS, 2024, 24 (15) : 4376 - 4382
  • [25] Abrupt ternary III-V metamorphic buffers
    Farinha, Thomas G.
    Supple, Edwin
    Gorman, Brian P.
    Richardson, Christopher J. K.
    JOURNAL OF APPLIED PHYSICS, 2024, 135 (17)
  • [26] III-V compound materials and lasers on silicon
    Yang, Wenyu
    Li, Yajie
    Meng, Fangyuan
    Yu, Hongyan
    Wang, Mengqi
    Wang, Pengfei
    Luo, Guangzhen
    Zhou, Xuliang
    Pan, Jiaoqing
    JOURNAL OF SEMICONDUCTORS, 2019, 40 (10)
  • [27] Fabrication of high efficiency III-V quantum nanostructures at low thermal budget on Si
    Bietti, S.
    Somaschini, C.
    Sanguinetti, S.
    Koguchi, N.
    Isella, G.
    Chrastina, D.
    APPLIED PHYSICS LETTERS, 2009, 95 (24)
  • [28] Heterointegration of III-V on silicon using a crystalline oxide buffer layer
    Bhatnagar, K.
    Rojas-Ramirez, J. S.
    Contreras-Guerrero, R.
    Caro, M.
    Droopad, R.
    JOURNAL OF CRYSTAL GROWTH, 2015, 425 : 262 - 267
  • [29] III-V on Silicon Nanocomposites
    Reithmaier, Johann Peter
    Benyoucef, Mohamed
    SILICON PHOTONICS, 2018, 99 : 27 - 42
  • [30] III-V nanowire heterostructures
    Dubrovskii, V. G.
    2018 INTERNATIONAL CONFERENCE LASER OPTICS (ICLO 2018), 2018, : 436 - 436