Numerical study on the vortex-induced vibration of a circular cylinder in viscoelastic fluids

被引:26
作者
Xiong, Yongliang [1 ,2 ]
Peng, Sai [1 ,2 ,3 ]
Zhang, Mengqi [4 ]
Yang, Dan [5 ]
机构
[1] Huazhong Univ Sci & Technol, Dept Mech, Wuhan 430074, Hubei, Peoples R China
[2] Hubei Key Lab Engn Struct Anal & Safety Assessmen, Luoyu Rd, Wuhan 430074, Hubei, Peoples R China
[3] Southern Univ Sci & Technol, Dept Mech & Aerosp, Shenzhen 518055, Guangdong, Peoples R China
[4] Natl Univ Singapore, Dept Mech Engn, 9 Engn Dr 1, Singapore 117575, Singapore
[5] Huazhong Univ Sci & Technol, Sch Naval Architecture & Ocean Engn, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Vortex-induced vibration; Circular cylinder; FENE-P; Numerical simulation; KARMAN VORTEX; FLOW; SIMULATIONS; SUPPRESSION; DYNAMICS; WAKE; MECHANISM; STREET; SCHEME;
D O I
10.1016/j.jnnfm.2019.104170
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The vortex-induced vibration (VIV) in a Newtonian fluid has been widely studied due to its significance in many industrial applications. However, it could be significantly affected by the addition of polymer. In this work, we investigate the viscoelastic effect on the VIV of a circular cylinder whose motion is confined in the cross-flow direction. The Arbitrary Lagrangian-Eulerian (ALE) based finite volume method is used to carry out the two-dimensional simulations at the Reynolds number (Re) range of 30-500. The nonlinear FENE-P model is used to characterize the polymeric viscoelastic fluids. The results show that the addition of polymers in a Newtonian fluid can suppress the VIV amplitude of the cylinder since the polymer can significantly modify the vortex pattern and inhibit the fluctuation in flow. Both higher Weissenberg Number (We) and larger maximum polymer extensibility can reinforce this tendency. Furthermore, the corresponding reduced velocity for the peak of maximum vibration amplitude increases as the increase of Weissenberg number. This is because that the viscoelasticity can reduce the characteristic frequency in the wake flow. Finally, the viscoelasticity can increase the critical Re of the structure vibrations implying a more stable flow.
引用
收藏
页数:14
相关论文
共 48 条
[1]   Strongly coupled flow/structure interactions with a geometrically conservative ALE scheme on general hybrid meshes [J].
Ahn, Hyung Taek ;
Kallinderis, Yannis .
JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 219 (02) :671-696
[2]   LINEAR-STABILITY OF FREE SHEAR-FLOW OF VISCOELASTIC LIQUIDS [J].
AZAIEZ, J ;
HOMSY, GM .
JOURNAL OF FLUID MECHANICS, 1994, 268 :37-69
[3]   Experimental studies of passive control of vortex-induced vibration [J].
Bearman, P ;
Brankovic, M .
EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2004, 23 (01) :9-15
[4]   Circular cylinder wakes and vortex-induced vibrations [J].
Bearman, P. W. .
JOURNAL OF FLUIDS AND STRUCTURES, 2011, 27 (5-6) :648-658
[5]   VORTEX SHEDDING FROM OSCILLATING BLUFF-BODIES [J].
BEARMAN, PW .
ANNUAL REVIEW OF FLUID MECHANICS, 1984, 16 :195-222
[6]  
Bird R. B., 1987, FLUID MECH, V2
[7]   Vortex-induced vibrations of two cylinders in tandem arrangement in the proximity-wake interference region [J].
Borazjani, Iman ;
Sotiropoulos, Fotis .
JOURNAL OF FLUID MECHANICS, 2009, 621 :321-364
[8]   Shear instability inhibition in a cylinder wake by local injection of a viscoelastic fluid [J].
Cadot, O ;
Lebey, M .
PHYSICS OF FLUIDS, 1999, 11 (02) :494-496
[9]   Experimental characterization of viscoelastic effects on two- and three-dimensional shear instabilities [J].
Cadot, O ;
Kumar, S .
JOURNAL OF FLUID MECHANICS, 2000, 416 :151-172
[10]   Control of flow over a bluff body [J].
Choi, Haecheon ;
Jeon, Woo-Pyung ;
Kim, Jinsung .
ANNUAL REVIEW OF FLUID MECHANICS, 2008, 40 :113-139