Transformer for Nonintrusive Load Monitoring: Complexity Reduction and Transferability

被引:13
作者
Wang, Lingxiao [1 ]
Mao, Shiwen [1 ]
Nelms, R. Mark [1 ]
机构
[1] Auburn Univ, Dept Elect & Comp Engn, Auburn, AL 36849 USA
关键词
Transformers; Data models; Computational modeling; Adaptation models; Internet of Things; Load modeling; Hidden Markov models; Attention; nonintrusive load monitoring (NILM); smart home; transferability; transformer;
D O I
10.1109/JIOT.2022.3163347
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Nonintrusive load monitoring (NILM) is to obtain individual appliance's electricity consumption from aggregated smart meter data. In this article, we propose a middle window transformer model, termed Midformer, for NILM. Existing models are limited by high computational complexity, dependency on data, and poor transferability. In Midformer, we first exploit patchwise embedding to shorten the input length, and then reduce the size of queries in the attention layer by only using global attention on a few selected input locations at the center of the window to capture the global context. The cyclically shifted window technique is used to preserve connection across patches. We also follow the pretraining and fine-tuning paradigm to relieve the dependency on data, reduce the computation in modeling training, and enhance transferability of the model to unknown tasks and domains. Our experimental study using two real-world data sets demonstrates the superior performance and transferability of Midformer over three baseline models.
引用
收藏
页码:18987 / 18997
页数:11
相关论文
共 45 条
[1]  
Ahmed A., 2020, PROC IEEE INT C COMM, P1, DOI [10.1109/SmartGridComm47815.2020.9302933, DOI 10.1109/SMARTGRIDCOMM47815.2020.9302933]
[2]  
Bahdanau D, 2016, Arxiv, DOI arXiv:1409.0473
[3]   Denoising autoencoders for Non-Intrusive Load Monitoring: Improvements and comparative evaluation [J].
Bonfigli, Roberto ;
Felicetti, Andrea ;
Principi, Emanuele ;
Fagiani, Marco ;
Squartini, Stefano ;
Piazza, Francesco .
ENERGY AND BUILDINGS, 2018, 158 :1461-1474
[4]   Scale- and Context-Aware Convolutional Non-Intrusive Load Monitoring [J].
Chen, Kunjin ;
Zhang, Yu ;
Wang, Qin ;
Hu, Jun ;
Fan, Hang ;
He, Jinliang .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2020, 35 (03) :2362-2373
[5]   Convolutional sequence to sequence non-intrusive load monitoring [J].
Chen, Kunjin ;
Wang, Qin ;
He, Ziyu ;
Chen, Kunlong ;
Hu, Jun ;
He, Jinliang .
JOURNAL OF ENGINEERING-JOE, 2018, (17) :1860-1864
[6]   Transfer Learning for Non-Intrusive Load Monitoring [J].
D'Incecco, Michele ;
Squartini, Stefano ;
Zhong, Mingjun .
IEEE TRANSACTIONS ON SMART GRID, 2020, 11 (02) :1419-1429
[7]  
Dosovitskiy A, 2021, Arxiv, DOI [arXiv:2010.11929, DOI 10.48550/ARXIV.2010.11929]
[8]   Temperature Forecasting for Stored Grain: A Deep Spatiotemporal Attention Approach [J].
Duan, Shanshan ;
Yang, Weidong ;
Wang, Xuyu ;
Mao, Shiwen ;
Zhang, Yuan .
IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (23) :17147-17160
[9]  
Figueiredo MB, 2011, LECT NOTES COMPUT SC, V6594, P31, DOI 10.1007/978-3-642-20267-4_4
[10]  
Goodfellow IJ, 2014, arXiv