DNA Translocation through Graphene Nanopores

被引:640
|
作者
Merchant, Christopher A. [1 ]
Healy, Ken [1 ]
Wanunu, Meni [1 ]
Ray, Vishva [1 ]
Peterman, Neil [1 ]
Bartel, John [1 ]
Fischbein, Michael D. [1 ]
Venta, Kimberly [1 ]
Luo, Zhengtang [1 ]
Johnson, A. T. Charlie [1 ]
Drndic, Marija [1 ]
机构
[1] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
DNA sequencing; atomic layer deposition; single molecule; nanopores; ATOMIC LAYER DEPOSITION; IDENTIFICATION; FABRICATION; MOLECULES; TRANSPORT; MEMBRANE; FILMS;
D O I
10.1021/nl101046t
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report on DNA translocations through nanopores created in graphene membranes. Devices consist of 1-5 nm thick graphene membranes with electron-beam sculpted nanopores from 5 to 10 nm in diameter. Due to the thin nature of the graphene membranes, we observe larger blocked currents than for traditional solid-state nanopores. However, ionic current noise levels are several orders of magnitude larger than those for silicon nitride nanopores. These fluctuations are reduced with the atomic-layer deposition of 15 nm of titanium dioxide over the device. Unlike traditional solid-state nanopore materials that are insulating, graphene is an excellent electrical conductor. Use of graphene as a membrane material opens the door to a new class of nanopore devices in which electronic sensing and control are performed directly at the pore.
引用
收藏
页码:2915 / 2921
页数:7
相关论文
共 50 条
  • [41] Simulation study on the translocation of polyelectrolyte through conical nanopores
    Sun, Li-Zhen
    Li, Haibin
    Xu, Xiaojun
    Luo, Meng-Bo
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2018, 30 (49)
  • [42] DNA capture in nanopores for genome sequencing: challenges and opportunities
    He, Yuhui
    Tsutsui, Makusu
    Taniguchi, Masateru
    Kawai, Tomoji
    JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (27) : 13423 - 13427
  • [43] Translocation of Biomolecules Through Solid-State Nanopores: Theory Meets Experiments
    Fyta, Maria
    Melchionna, Simone
    Succi, Sauro
    JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2011, 49 (14) : 985 - 1011
  • [44] Forces affecting double-stranded DNA translocation through synthetic nanopores
    Chen, Lei
    Conlisk, A. T.
    BIOMEDICAL MICRODEVICES, 2011, 13 (02) : 403 - 414
  • [45] Slowing Down DNA Translocation Through Solid-State Nanopores by Pressure
    Zhang, Hengbin
    Zhao, Qing
    Tang, Zhipeng
    Liu, Song
    Li, Qingtao
    Fan, Zhongchao
    Yang, Fuhua
    You, Liping
    Li, Xuemei
    Zhang, Jingmin
    Yu, Dapeng
    SMALL, 2013, 9 (24) : 4112 - 4117
  • [46] The origin of the voltage dependence of conductance blockades from DNA translocation through solid-state nanopores
    Zhang, Yin
    Lian, Xiang
    Si, Wei
    Sha, Jingjie
    Chen, Yunfei
    MATERIALS CHEMISTRY FRONTIERS, 2023, 7 (19) : 4564 - 4572
  • [47] The distribution of DNA translocation times in solid-state nanopores
    Li, Jiali
    Talaga, David S.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (45)
  • [48] A Statistical Model for Translocation of Structured Polypeptide Chains through Nanopores
    Ammenti, Alessandro
    Cecconi, Fabio
    Marconi, Umberto Marini Bettolo
    Vulpiani, Angelo
    JOURNAL OF PHYSICAL CHEMISTRY B, 2009, 113 (30) : 10348 - 10356
  • [49] Molecular Dynamics Investigation of Polylysine Peptide Translocation through MoS2 Nanopores
    Nicolai, Adrien
    Perez, Maria Daniela Barrios
    Delarue, Patrice
    Meunier, Vincent
    Drndic, Marija
    Senet, Patrick
    JOURNAL OF PHYSICAL CHEMISTRY B, 2019, 123 (10) : 2342 - 2353
  • [50] Gate Manipulation of DNA Capture into Nanopores
    He, Yuhui
    Tsutsui, Makusu
    Fan, Chun
    Taniguchi, Masateru
    Kawai, Tomoji
    ACS NANO, 2011, 5 (10) : 8391 - 8397