DNA Translocation through Graphene Nanopores

被引:640
|
作者
Merchant, Christopher A. [1 ]
Healy, Ken [1 ]
Wanunu, Meni [1 ]
Ray, Vishva [1 ]
Peterman, Neil [1 ]
Bartel, John [1 ]
Fischbein, Michael D. [1 ]
Venta, Kimberly [1 ]
Luo, Zhengtang [1 ]
Johnson, A. T. Charlie [1 ]
Drndic, Marija [1 ]
机构
[1] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
DNA sequencing; atomic layer deposition; single molecule; nanopores; ATOMIC LAYER DEPOSITION; IDENTIFICATION; FABRICATION; MOLECULES; TRANSPORT; MEMBRANE; FILMS;
D O I
10.1021/nl101046t
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report on DNA translocations through nanopores created in graphene membranes. Devices consist of 1-5 nm thick graphene membranes with electron-beam sculpted nanopores from 5 to 10 nm in diameter. Due to the thin nature of the graphene membranes, we observe larger blocked currents than for traditional solid-state nanopores. However, ionic current noise levels are several orders of magnitude larger than those for silicon nitride nanopores. These fluctuations are reduced with the atomic-layer deposition of 15 nm of titanium dioxide over the device. Unlike traditional solid-state nanopore materials that are insulating, graphene is an excellent electrical conductor. Use of graphene as a membrane material opens the door to a new class of nanopore devices in which electronic sensing and control are performed directly at the pore.
引用
收藏
页码:2915 / 2921
页数:7
相关论文
共 50 条
  • [1] DNA translocation through an array of kinked nanopores
    Chen, Zhu
    Jiang, Yingbing
    Dunphy, Darren R.
    Adams, David P.
    Hodges, Carter
    Liu, Nanguo
    Zhang, Nan
    Xomeritakis, George
    Jin, Xiaozhong
    Aluru, N. R.
    Gaik, Steven J.
    Hillhouse, Hugh W.
    Brinker, C. Jeffrey
    NATURE MATERIALS, 2010, 9 (08) : 667 - 675
  • [2] Controlling DNA Translocation Through Solid-state Nanopores
    Yuan, Zhishan
    Liu, Youming
    Dai, Min
    Yi, Xin
    Wang, Chengyong
    NANOSCALE RESEARCH LETTERS, 2020, 15 (01):
  • [3] Ionic liquid prolongs DNA translocation through graphene nanopores
    Kulkarni, Mandar
    Mukherjee, Arnab
    RSC ADVANCES, 2016, 6 (51) : 46019 - 46029
  • [4] Theoretical studies on the dynamics of DNA fragment translocation through multilayer graphene nanopores
    Liang, Lijun
    Zhang, Zhisen
    Shen, Jiawei
    Zhe, Kong
    Wang, Qi
    Wu, Tao
    Agren, Hans
    Tu, Yaoquan
    RSC ADVANCES, 2014, 4 (92) : 50494 - 50502
  • [5] DNA Translocation through Hybrid Bilayer Nanopores
    Balasubramanian, Ramkumar
    Pal, Sohini
    Joshi, Himanshu
    Rao, Anjana
    Naik, Akshay
    Varma, Manoj
    Chakraborty, Banani
    Maiti, Prabal K.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (18) : 11908 - 11916
  • [6] Thermophoretic Manipulation of DNA Translocation through Nanopores
    He, Yuhui
    Tsutsui, Makusu
    Scheicher, Ralph H.
    Bai, Fan
    Taniguchi, Masateru
    Kawai, Tomoji
    ACS NANO, 2013, 7 (01) : 538 - 546
  • [7] Dynamic and Electronic Transport Properties of DNA Translocation through Graphene Nanopores
    Avdoshenko, Stanislav M.
    Nozaki, Daijiro
    da Rocha, Claudia Gomes
    Gonzalez, Jhon W.
    Lee, Myeong H.
    Gutierrez, Rafael
    Cuniberti, Gianaurelio
    NANO LETTERS, 2013, 13 (05) : 1969 - 1976
  • [8] DNA translocation through graphene nanopores: a first-principles study
    Peng, Shenglin
    Yang, Zhixiong
    Ni, Xiang
    Zhang, Hua
    Jun Ouyang
    Ouyang Fangping
    MATERIALS RESEARCH EXPRESS, 2014, 1 (01):
  • [9] DNA translocation through pH-dependent soft nanopores
    Yousefi, Alireza
    Ganjizade, Ardalan
    Ashrafizadeh, Seyed Nezameddin
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2021, 50 (06): : 905 - 914
  • [10] Regulating DNA translocation through functionalized soft nanopores
    Yeh, Li-Hsien
    Zhang, Mingkan
    Qian, Shizhi
    Hsu, Jyh-Ping
    NANOSCALE, 2012, 4 (08) : 2685 - 2693