Design of highly perceptible dual-resonance all-dielectric metasurface colorimetric sensor via deep neural networks

被引:12
作者
Son, Hyunwoo [1 ]
Kim, Sun-Je [2 ]
Hong, Jongwoo [1 ]
Sung, Jangwoon [1 ]
Lee, Byoungho [1 ]
机构
[1] Seoul Natl Univ, Interuniv Semicond Res Ctr, Sch Elect & Comp Engn, Gwanakro 1, Seoul 08826, South Korea
[2] Myongji Univ, Dept Phys, Myongjiro 116, Yongin 17058, Gyeonggi Do, South Korea
基金
新加坡国家研究基金会;
关键词
COLOR-DIFFERENCE FORMULA;
D O I
10.1038/s41598-022-12592-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Colorimetric sensing, which provides effective detection of bio-molecular signals with one's naked eye, is an exceptionally promising sensing technique in that it enables convenient detection and simplification of entire sensing system. Though colorimetric sensors based on all-dielectric nanostructures have potential to exhibit distinct color variations enabling manageable detection due to their trivial intrinsic loss, there is crucial limitation that the sensitivity to environmental changes lags behind their plasmonic counterparts because of relatively small region of near field-analyte interaction of the dielectric Mie-type resonator. To overcome this challenge, we proposed all-dielectric metasurface colorimetric sensor which exhibits dual-resonance in the visible region. Thereafter, we confirmed with simulation that, in the elaborately designed dual-Lorentzian-type spectra, highly perceptible variations of structural color were manifested even in minute change of peripheral refractive index. In addition to verifying physical effectiveness of the superior colorimetric sensing performance appearing in the dual-resonance type sensor, by combining advanced optimization technique utilizing deep neural networks, we attempted to maximize sensing performance while obtaining dramatic improvement of design efficiency. Through well-trained deep neural network that accurately simulates the input target spectrum, we numerically verified that designed colorimetric sensor shows a remarkable sensing resolution distinguishable up to change of refractive index of 0.0086.
引用
收藏
页数:10
相关论文
共 45 条
[41]   Color Image Quality Assessment Based on CIEDE2000 [J].
Yang, Yang ;
Ming, Jun ;
Yu, Nenghai .
ADVANCES IN MULTIMEDIA, 2012, 2012
[42]   All-dielectric metasurface analogue of electromagnetically induced transparency [J].
Yang, Yuanmu ;
Kravchenko, Ivan I. ;
Briggs, Dayrl P. ;
Valentine, Jason .
NATURE COMMUNICATIONS, 2014, 5
[43]   Multiplexed supercell metasurface design and optimization with tandem residual networks [J].
Yeung, Christopher ;
Tsai, Ju-Ming ;
King, Brian ;
Pham, Benjamin ;
Ho, David ;
Liang, Julia ;
Knight, Mark W. ;
Raman, Aaswath P. .
NANOPHOTONICS, 2021, 10 (03) :1133-1143
[44]   Colorimetric and Near-Absolute Polarization-Insensitive Refractive-Index Sensing in All-Dielectric Guided-Mode Resonance Based Metasurface [J].
Yildirim, Deniz Umut ;
Ghobadi, Amir ;
Soydan, Mahmut Can ;
Gokbayrak, Murat ;
Toprak, Ahmet ;
Butun, Bayram ;
Ozbay, Ekmel .
JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (31) :19125-19134
[45]   High-quality-factor multiple Fano resonances for refractive index sensing [J].
Zhang, Yuebian ;
Liu, Wenwei ;
Li, Zhancheng ;
Li, Zhi ;
Cheng, Hua ;
Chen, Shuqi ;
Tian, Jianguo .
OPTICS LETTERS, 2018, 43 (08) :1842-1845