LQ Non-Gaussian Regulator With Markovian Control

被引:12
作者
Battilotti, Stefano [1 ]
Cacace, Filippo [2 ]
d'Angelo, Massimiliano [1 ]
Germani, Alfredo [3 ]
Sinopoli, Bruno [4 ]
机构
[1] Sapienza Univ Roma, Dipartimento Ingn Informat Automat & Gest, I-00186 Rome, Italy
[2] Univ Campus Biomed Roma, I-00144 Rome, Italy
[3] Univ Aquila, Dipartimento Ingn & Sci Informaz Matemat, I-67100 Laquila, Italy
[4] Washington Univ, Elect & Syst Engn Dept, St Louis, MO 63130 USA
来源
IEEE CONTROL SYSTEMS LETTERS | 2019年 / 3卷 / 03期
关键词
Optimal control; LQG regulator; Kalman filtering; non-Gaussian systems;
D O I
10.1109/LCSYS.2019.2916287
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This letter concerns the linear quadratic non-Gaussian (LQnG) sub-optimal control problem when the input signal travels through an unreliable network, namely a Gilbert-Elliot channel. In particular, the control input packet losses are modeled by a two-state Markov chain with known transition probability matrix, and we assume that the moments of the non-Gaussian noise sequences up to the fourth order are known. By mean of a suitable rewriting of the system through an output injection term, and by considering an augmented system with the second-order Kronecker power of the measurements, a simple solution is provided by substituting the Kalman predictor of the LQG control law with a quadratic optimal predictor. Numerical simulations show the effective ness of the proposed method.
引用
收藏
页码:679 / 684
页数:6
相关论文
共 34 条
[1]   Discrete-time nonlinear filtering algorithms using Gauss-Hermite quadrature [J].
Arasaratnam, Ienkaran ;
Haykin, Simon ;
Elliott, Robert J. .
PROCEEDINGS OF THE IEEE, 2007, 95 (05) :953-977
[2]   A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J].
Arulampalam, MS ;
Maskell, S ;
Gordon, N ;
Clapp, T .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) :174-188
[3]   Control and communication challenges in networked real-time systems [J].
Baillieul, John ;
Antsaklis, Panos J. .
PROCEEDINGS OF THE IEEE, 2007, 95 (01) :9-28
[4]  
Balakrishnan A.V., 1987, KALMAN FILTERING THE
[5]   An Improved Approach to the LQ non-Gaussian Regulator Problem [J].
Battilotti, S. ;
Cacace, F. ;
d'Angelo, M. ;
Germani, A. .
IFAC PAPERSONLINE, 2017, 50 (01) :11808-11813
[6]   The Polynomial Approach to the LQ Non-Gaussian Regulator Problem Through Output Injection [J].
Battilotti, Stefano ;
Cacace, Filippo ;
d'Angelo, Massimiliano ;
Germani, Alfredo .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (02) :538-552
[7]   Distributed Kalman Filtering Over Sensor Networks With Unknown Random Link Failures [J].
Battilotti, Stefano ;
Cacace, Filippo ;
d'Angelo, Massimiliano ;
Germani, Alfredo .
IEEE CONTROL SYSTEMS LETTERS, 2018, 2 (04) :587-592
[8]   Target tracking in glint noise environment using nonlinear non-Gaussian Kalman filter [J].
Bilik, I. ;
Tabrikian, J. .
2006 IEEE RADAR CONFERENCE, VOLS 1 AND 2, 2006, :282-+
[9]   Feedback polynomial filtering and control of non-Gaussian linear time-varying systems [J].
Cacace, Filippo ;
Conte, Francesco ;
d'Angelo, Massimiliano ;
Germani, Alfredo .
SYSTEMS & CONTROL LETTERS, 2019, 123 :108-115
[10]   Feedback quadratic filtering [J].
Cacace, Filippo ;
Conte, Francesco ;
Germani, Alfredo ;
Palombo, Giovanni .
AUTOMATICA, 2017, 82 :158-164