Hyperbolicity-preserving and well-balanced stochastic Galerkin method for two-dimensional shallow water equations

被引:14
作者
Dai, Dihan [1 ,2 ]
Epshteyn, Yekaterina [1 ]
Narayan, Akil [1 ,2 ]
机构
[1] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
[2] Univ Utah, Sci Comp & Imaging SCI Inst, Salt Lake City, UT 84112 USA
关键词
Finite volume method; Stochastic Galerkin method; Shallow water equations; Hyperbolic systems of conservation and balance laws; CENTRAL-UPWIND SCHEME; POLYNOMIAL CHAOS; CONSERVATION-LAWS; UNCERTAINTY PROPAGATION; DIFFERENTIAL-EQUATIONS; BOLTZMANN-EQUATION; TRIANGULAR GRIDS; EULER EQUATIONS; SYSTEMS; RECONSTRUCTION;
D O I
10.1016/j.jcp.2021.110901
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Stochastic Galerkin formulations of the two-dimensional shallow water systems parameterized with random variables may lose hyperbolicity, and hence change the nature of the original model. In this work, we present a hyperbolicity-preserving stochastic Galerkin formulation by carefully selecting the polynomial chaos approximations to the nonlinear terms in the shallow water equations. We derive a sufficient condition to preserve the hyperbolicity of the stochastic Galerkin system which requires only a finite collection of positivity conditions on the stochastic water height at selected quadrature points in parameter space. Based on our theoretical results for the stochastic Galerkin formulation, we develop a corresponding well-balanced hyperbolicity-preserving central-upwind scheme. We demonstrate the accuracy and the robustness of the new scheme on several challenging numerical tests. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:28
相关论文
共 54 条
[1]   Galerkin finite element approximations of stochastic elliptic partial differential equations [J].
Babuska, I ;
Tempone, R ;
Zouraris, GE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (02) :800-825
[2]   A Well-Balanced Reconstruction of Wet/Dry Fronts for the Shallow Water Equations [J].
Bollermann, Andreas ;
Chen, Guoxian ;
Kurganov, Alexander ;
Noelle, Sebastian .
JOURNAL OF SCIENTIFIC COMPUTING, 2013, 56 (02) :267-290
[3]   Finite Volume Evolution Galerkin Methods for the Shallow Water Equations with Dry Beds [J].
Bollermann, Andreas ;
Noelle, Sebastian ;
Lukacova-Medvid'ova, Maria .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2011, 10 (02) :371-404
[4]   WELL-BALANCED POSITIVITY PRESERVING CENTRAL-UPWIND SCHEME ON TRIANGULAR GRIDS FOR THE SAINT-VENANT SYSTEM [J].
Bryson, Steve ;
Epshteyn, Yekaterina ;
Kurganov, Alexander ;
Petrova, Guergana .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2011, 45 (03) :423-446
[5]   Depletion of CG-Specific Methylation in Mycoplasma hyorhinis Genomic DNA after Host Cell Invasion [J].
Chernov, Andrei V. ;
Reyes, Leticia ;
Peterson, Scott ;
Strongin, Alex Y. .
PLoS One, 2015, 10 (11)
[6]   Well-balanced positivity preserving central-upwind scheme for the shallow water system with friction terms [J].
Chertock, A. ;
Cui, S. ;
Kurganov, A. ;
Wu, T. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2015, 78 (06) :355-383
[7]  
Chertock Alina., 2015, WELL BALANCED OPERAT
[8]   HYPERBOLICITY-PRESERVING AND WELL-BALANCED STOCHASTIC GALERKIN METHOD FOR SHALLOW WATER EQUATIONS [J].
Dai, Dihan ;
Epshteyn, Yekaterina ;
Narayan, Akil .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (02) :A929-A952
[9]   Numerical challenges in the use of polynomial chaos representations for stochastic processes [J].
Debusschere, BJ ;
Najm, HN ;
Pébay, PP ;
Knio, OM ;
Ghanem, RG ;
Le Maître, OP .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 26 (02) :698-719
[10]  
Després B, 2013, LECT NOTES COMP SCI, V92, P105, DOI 10.1007/978-3-319-00885-1_3