A Combined Theory-Experiment Analysis of the Surface Species in Lithium-Mediated NH3 Electrosynthesis

被引:96
作者
Schwalbe, Jay A. [1 ,2 ]
Statt, Michael J. [1 ,2 ]
Chosy, Cullen [1 ,2 ]
Singh, Aayush R. [1 ,2 ]
Rohr, Brian A. [1 ,2 ]
Nielander, Adam C. [1 ,2 ]
Andersen, Suzanne Z. [3 ]
McEnaney, Joshua M. [1 ,2 ]
Baker, Jon G. [1 ,2 ]
Jaramillo, Thomas F. [1 ,2 ]
Norskov, Jens K. [3 ]
Cargnello, Matteo [1 ,2 ]
机构
[1] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[2] Stanford Univ, SUNCAT Ctr Interface Sci & Catalysis, Stanford, CA 94305 USA
[3] Tech Univ Denmark, Dept Phys, Lyngby, Denmark
关键词
ammonia; catalysis; density functional calculations; electrochemistry; Haber-Bosch; AMMONIA-SYNTHESIS; REDUCTION; PRESSURE; ELECTRODES; NITROGEN;
D O I
10.1002/celc.201902124
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Electrochemical processes for ammonia synthesis could potentially replace the high temperature and pressure conditions of the Haber-Bosch process, with voltage offering a pathway to distributed fertilizer production that leverages the rapidly decreasing cost of renewable electricity. However, nitrogen is an unreactive molecule and the hydrogen evolution reaction presents a major selectivity challenge. An electrode of electrodeposited lithium in tetrahydrofuran solvent overcomes both problems by providing a surface that easily reacts with nitrogen and by limiting the access of protons with a nonaqueous electrolyte. Under these conditions, we measure relatively high faradaic efficiencies (ca. 10 %) and rates (0.1 mA cm(-2)) toward NH3. We observe the development of a solid electrolyte interface layer as well as the accumulation of lithium and lithium-containing species. Detailed DFT studies suggest lithium nitride and hydride to be catalytically active phases given their thermodynamic and kinetic stability relative to metallic lithium under reaction conditions and the fast diffusion of nitrogen in lithium.
引用
收藏
页码:1542 / 1549
页数:8
相关论文
共 27 条
[11]   Commentary: The Materials Project: A materials genome approach to accelerating materials innovation [J].
Jain, Anubhav ;
Shyue Ping Ong ;
Hautier, Geoffroy ;
Chen, Wei ;
Richards, William Davidson ;
Dacek, Stephen ;
Cholia, Shreyas ;
Gunter, Dan ;
Skinner, David ;
Ceder, Gerbrand ;
Persson, Kristin A. .
APL MATERIALS, 2013, 1 (01)
[12]   Understanding Continuous Lithium-Mediated Electrochemical Nitrogen Reduction [J].
Lazouski, Nikifar ;
Schiffer, Zachary J. ;
Williams, Kindle ;
Manthiram, Karthish .
JOULE, 2019, 3 (04) :1127-1139
[13]   Ammonia synthesis from N2 and H2O using a lithium cycling electrification strategy at atmospheric pressure [J].
McEnaney, Joshua M. ;
Singh, Aayush R. ;
Schwalbe, Jay A. ;
Kibsgaard, Jakob ;
Lin, John C. ;
Cargnello, Matteo ;
Jaramillo, Thomas F. ;
Norskov, Jens K. .
ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (07) :1621-1630
[14]   Chemical looping of metal nitride catalysts: low-pressure ammonia synthesis for energy storage [J].
Michalsky, R. ;
Avram, A. M. ;
Peterson, B. A. ;
Pfromm, P. H. ;
Peterson, A. A. .
CHEMICAL SCIENCE, 2015, 6 (07) :3965-3974
[15]   The Challenge of Electrochemical Ammonia Synthesis: A New Perspective on the Role of Nitrogen Scaling Relations [J].
Montoya, Joseph H. ;
Tsai, Charlie ;
Vojvodic, Aleksandra ;
Norskov, Jens K. .
CHEMSUSCHEM, 2015, 8 (13) :2180-2186
[16]   Origin of the overpotential for oxygen reduction at a fuel-cell cathode [J].
Norskov, JK ;
Rossmeisl, J ;
Logadottir, A ;
Lindqvist, L ;
Kitchin, JR ;
Bligaard, T ;
Jónsson, H .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (46) :17886-17892
[17]   A comparative technoeconomic analysis of renewable hydrogen production using solar energy [J].
Shaner, Matthew R. ;
Atwater, Harry A. ;
Lewis, Nathan S. ;
McFarland, Eric W. .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (07) :2354-2371
[18]   Strategies toward Selective Electrochemical Ammonia Synthesis [J].
Singh, Aayush R. ;
Rohr, Brian A. ;
Statt, Michael J. ;
Schwalbe, Jay A. ;
Cargnello, Matteo ;
Norskov, Jens K. .
ACS CATALYSIS, 2019, 9 (09) :8316-8324
[19]   Electrochemical Ammonia Synthesis-The Selectivity Challenge [J].
Singh, Aayush R. ;
Rohr, Brian A. ;
Schwalbe, Jay A. ;
Cargnello, Matteo ;
Chan, Karen ;
Jaramillo, Thomas F. ;
Chorkendorff, Ib ;
Norskov, Jens K. .
ACS CATALYSIS, 2017, 7 (01) :706-709
[20]   A comparative technoeconomic analysis of pathways for commercial electrochemical CO2 reduction to liquid products [J].
Spurgeon, Joshua M. ;
Kumar, Bijandra .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (06) :1536-1551