A Combined Theory-Experiment Analysis of the Surface Species in Lithium-Mediated NH3 Electrosynthesis

被引:92
作者
Schwalbe, Jay A. [1 ,2 ]
Statt, Michael J. [1 ,2 ]
Chosy, Cullen [1 ,2 ]
Singh, Aayush R. [1 ,2 ]
Rohr, Brian A. [1 ,2 ]
Nielander, Adam C. [1 ,2 ]
Andersen, Suzanne Z. [3 ]
McEnaney, Joshua M. [1 ,2 ]
Baker, Jon G. [1 ,2 ]
Jaramillo, Thomas F. [1 ,2 ]
Norskov, Jens K. [3 ]
Cargnello, Matteo [1 ,2 ]
机构
[1] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[2] Stanford Univ, SUNCAT Ctr Interface Sci & Catalysis, Stanford, CA 94305 USA
[3] Tech Univ Denmark, Dept Phys, Lyngby, Denmark
关键词
ammonia; catalysis; density functional calculations; electrochemistry; Haber-Bosch; AMMONIA-SYNTHESIS; REDUCTION; PRESSURE; ELECTRODES; NITROGEN;
D O I
10.1002/celc.201902124
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Electrochemical processes for ammonia synthesis could potentially replace the high temperature and pressure conditions of the Haber-Bosch process, with voltage offering a pathway to distributed fertilizer production that leverages the rapidly decreasing cost of renewable electricity. However, nitrogen is an unreactive molecule and the hydrogen evolution reaction presents a major selectivity challenge. An electrode of electrodeposited lithium in tetrahydrofuran solvent overcomes both problems by providing a surface that easily reacts with nitrogen and by limiting the access of protons with a nonaqueous electrolyte. Under these conditions, we measure relatively high faradaic efficiencies (ca. 10 %) and rates (0.1 mA cm(-2)) toward NH3. We observe the development of a solid electrolyte interface layer as well as the accumulation of lithium and lithium-containing species. Detailed DFT studies suggest lithium nitride and hydride to be catalytically active phases given their thermodynamic and kinetic stability relative to metallic lithium under reaction conditions and the fast diffusion of nitrogen in lithium.
引用
收藏
页码:1542 / 1549
页数:8
相关论文
共 27 条
[1]   Electrochemical synthesis of ammonia via Mars-van Krevelen mechanism on the (111) facets of group III-VII transition metal mononitrides [J].
Abghoui, Younes ;
Skulason, Egill .
CATALYSIS TODAY, 2017, 286 :78-84
[2]  
Andersen S. Z., 2019, NATURE, P1
[3]   THE ELECTROCHEMISTRY OF NOBLE-METAL ELECTRODES IN APROTIC ORGANIC-SOLVENTS CONTAINING LITHIUM-SALTS [J].
AURBACH, D ;
DAROUX, M ;
FAGUY, P ;
YEAGER, E .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1991, 297 (01) :225-244
[4]   Electrochemical Reduction of N2 under Ambient Conditions for Artificial N2 Fixation and Renewable Energy Storage Using N2/NH3 Cycle [J].
Bao, Di ;
Zhang, Qi ;
Meng, Fan-Lu ;
Zhong, Hai-Xia ;
Shi, Miao-Miao ;
Zhang, Yu ;
Yan, Jun-Min ;
Jiang, Qing ;
Zhang, Xin-Bo .
ADVANCED MATERIALS, 2017, 29 (03)
[5]   Beyond fossil fuel-driven nitrogen transformations [J].
Chen, Jingguang G. ;
Crooks, Richard M. ;
Seefeldt, Lance C. ;
Bren, Kara L. ;
Bullock, R. Morris ;
Darensbourg, Marcetta Y. ;
Holland, Patrick L. ;
Hoffman, Brian ;
Janik, Michael J. ;
Jones, Anne K. ;
Kanatzidis, Mercouri G. ;
King, Paul ;
Lancaster, Kyle M. ;
Lymar, Sergei V. ;
Pfromm, Peter ;
Schneider, William F. ;
Schrock, Richard R. .
SCIENCE, 2018, 360 (6391)
[6]   A review of the existing and alternative methods for greener nitrogen fixation [J].
Cherkasov, N. ;
Ibhadon, A. O. ;
Fitzpatrick, P. .
CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2015, 90 :24-33
[7]   Ammonia Synthesis at Low Pressure [J].
Cussler, Edward ;
McCormick, Alon ;
Reese, Michael ;
Malmali, Mahdi .
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2017, (126)
[8]   The Use of Controls for Consistent and Accurate Measurements of Electrocatalytic Ammonia Synthesis from Dinitrogen [J].
Greenlee, Lauren F. ;
Renner, Julie N. ;
Foster, Shelby L. .
ACS CATALYSIS, 2018, 8 (09) :7820-7827
[9]   Critical Assessment of the Electrocatalytic Activity of Vanadium and Niobium Nitrides toward Dinitrogen Reduction to Ammonia [J].
Hoang-Long Du ;
Gengenbach, Thomas R. ;
Hodgetts, Rebecca ;
MacFarlane, Douglas R. ;
Simonov, Alexandr N. .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (07) :6839-6850
[10]   ELECTROCHEMICAL BEHAVIOR OF WATER IN TETRAHYDROFURAN [J].
INOCENCIO, AA .
ELECTROCHIMICA ACTA, 1978, 23 (10) :977-981