Effect of discretization error and adaptive mesh generation in diffuse optical absorption imaging: I

被引:20
作者
Guven, Murat [1 ]
Yazici, Birsen
Kwon, Kiwoon
Giladi, Eldar
Intes, Xavier
机构
[1] Rensselaer Polytech Inst, Elect Comp & Syst Engn Dept, New York, NY USA
[2] Rensselaer Polytech Inst, Dept Math Sci, New York, NY USA
[3] Rensselaer Polytech Inst, Dept Biomed Engn, New York, NY USA
关键词
D O I
10.1088/0266-5611/23/3/017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In diffuse optical tomography (DOT), the discretization error in the numerical solutions of the forward and inverse problems results in error in the reconstructed optical images. In this first part of our work, we analyse the error in the reconstructed optical absorption images, resulting from the discretization of the forward and inverse problems. Our analysis identifies several factors which influence the extent to which the discretization impacts on the accuracy of the reconstructed images. For example, the mutual dependence of the forward and inverse problems, the number of sources and detectors, their configuration and their orientation with respect to optical absorptive heterogeneities, and the formulation of the inverse problem. As a result, our error analysis shows that the discretization of one problem cannot be considered independent of the other problem. While our analysis focuses specifically on the discretization error in DOT, the approach can be extended to quantify other error sources in DOT and other inverse parameter estimation problems.
引用
收藏
页码:1115 / 1133
页数:19
相关论文
共 22 条
[1]   A UNIFIED APPROACH TO A POSTERIORI ERROR ESTIMATION USING ELEMENT RESIDUAL METHODS [J].
AINSWORTH, M ;
ODEN, JT .
NUMERISCHE MATHEMATIK, 1993, 65 (01) :23-50
[2]   Approximation errors and model reduction with an application in optical diffusion tomography [J].
Arridge, SR ;
Kaipio, JP ;
Kolehmainen, V ;
Schweiger, M ;
Somersalo, E ;
Tarvainen, T ;
Vauhkonen, M .
INVERSE PROBLEMS, 2006, 22 (01) :175-195
[3]   Optical tomography in medical imaging [J].
Arridge, SR .
INVERSE PROBLEMS, 1999, 15 (02) :R41-R93
[4]  
Atkinson K., 2001, Theoretical Numerical Analysis: A Functional Analysis Framework
[5]   ERROR ESTIMATES FOR ADAPTIVE FINITE-ELEMENT COMPUTATIONS [J].
BABUSKA, I ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) :736-754
[6]  
Babuska I, 1986, ACCURACY ESTIMATES A
[7]  
BANK RE, 1985, MATH COMPUT, V44, P283, DOI 10.1090/S0025-5718-1985-0777265-X
[8]  
BEILINA L, 2002, THESIS CHALMERS U TE
[9]  
BRENNER SC, 2002, MATH THEORY ELEMENT
[10]  
Colton D., 1998, INVERSE ACOUSTIC ELE, DOI DOI 10.1007/978-3-662-03537-5