Boundedness of integral operators in weighted Sobolev spaces

被引:10
作者
Oinarov, R. [1 ]
机构
[1] Eurasian Natl Univ, Astana, Kazakhstan
关键词
integral operators; weighted Lebesgue space; weighted Sobolev space; boundedness; LEBESGUE SPACES; INEQUALITIES; COMPACTNESS;
D O I
10.1070/IM2014v078n04ABEH002708
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain criteria for some classes of integral operators of Volterra type to be bounded operators from one weighted Sobolev space into another weighted Sobolev space.
引用
收藏
页码:836 / 853
页数:18
相关论文
共 10 条
[1]  
Kufner A., 2007, The Hardy inequality. About its history and some related results
[2]  
Natanson I. P., 1957, THEORY FUNCTIONS REA, V2
[3]  
Natanson I. P., 1957, THEORY FUNCTIONS REA, V1
[4]   Boundedness and compactness of Volterra type integral operators [J].
Oinarov, R. .
SIBERIAN MATHEMATICAL JOURNAL, 2007, 48 (05) :884-896
[5]  
OINAROV R, 1993, J LOND MATH SOC, V48, P103
[6]   Boundedness of integral operators from weighted Sobolev space to weighted Lebesgue space [J].
Oinarov, R. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2011, 56 (10-11) :1021-1038
[7]   Boundedness and compactness in weighted Lebesgue spaces of integral operators with variable integration limits [J].
Oinarov, R. .
SIBERIAN MATHEMATICAL JOURNAL, 2011, 52 (06) :1042-1055
[8]   Reversion of Holder type inequalities for sums of weighted norms and additive weighted estimates of integral operators [J].
Oinarov, R .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2003, 6 (03) :421-436
[9]  
Persson L.E., 2003, WEIGHTED INEQUALITIE
[10]   KERNEL OPERATORS WITH VARIABLE INTERVALS OF INTEGRATION IN LEBESGUE SPACES AND APPLICATIONS [J].
Stepanov, Vladimir D. ;
Ushakova, Elena P. .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2010, 13 (03) :449-510