MIML library: A modular and flexible library for multi-instance multi-label learning

被引:3
作者
Belmonte, Alvaro [1 ]
Zafra, Amelia [1 ,2 ]
Gibaja, Eva [1 ,2 ,3 ]
机构
[1] Univ Cordoba, Dept Comp Sci & Numer Anal, Cordoba, Spain
[2] Univ Cordoba, Andalusian Res Inst Data Sci & Computat Intelligen, Cordoba, Spain
[3] Univ Cordoba, Dept Comp Sci & Numer Anal, Campus Rabanales,Albert Einstein Bldg, 3rd floor, Cordoba 14071, Spain
关键词
Multi-instance learning; Multi-label learning; Weka; Mulan; Classification; CLASSIFICATION;
D O I
10.1016/j.neucom.2022.05.068
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
MIML library is a Java software tool to develop, test, and compare classification algorithms for multiinstance multi-label (MIML) learning. The library includes 43 algorithms and provides a specific format and facilities for data managing and partitioning, holdout and cross-validation methods, standard metrics for performance evaluation, and generation of reports. In addition, algorithms can be executed through xml configuration files without needing to program. It is platform-independent, extensible, free, opensource, and available on GitHub under the GNU General Public License.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:632 / 636
页数:5
相关论文
共 40 条
[1]  
Andrews S., 2003, Advances in Neural Information Processing Systems, P577, DOI DOI 10.5555/2968618.2968690
[2]  
[Anonymous], 2008, PROC ECML PKDD 2008
[3]  
[Anonymous], 2005, PROC ICM
[4]  
[Anonymous], 2005, Proceedings of the 22nd International Conference on Machine Learning, ICML'05, page
[5]  
[Anonymous], 2013, P 23 INT JOINT C ART
[6]  
Auer P, 2004, LECT NOTES COMPUT SC, V3201, P63
[7]  
Bjerring L, 2011, LECT NOTES ARTIF INT, V7106, P41, DOI 10.1007/978-3-642-25832-9_5
[8]  
Breiman L, 1996, MACH LEARN, V24, P123, DOI 10.1023/A:1018054314350
[9]   Combining instance-based learning and logistic regression for multilabel classification [J].
Cheng, Weiwei ;
Huellermeier, Eyke .
MACHINE LEARNING, 2009, 76 (2-3) :211-225
[10]   Solving the multiple instance problem with axis-parallel rectangles [J].
Dietterich, TG ;
Lathrop, RH ;
LozanoPerez, T .
ARTIFICIAL INTELLIGENCE, 1997, 89 (1-2) :31-71