Abelian Arithmetic Chern-Simons Theory and Arithmetic Linking Numbers

被引:4
作者
Chung, Hee-Joong [1 ,2 ]
Kim, Dohyeong [3 ]
Kim, Minhyong [2 ,4 ]
Pappas, George [5 ]
Park, Jeehoon [6 ]
Yoo, Hwajong [7 ]
机构
[1] Pohang Univ Sci & Technol, Dept Phys, 77 Cheongam Ro, Pohang 37673, South Korea
[2] Korea Inst Adv Study, 85 Hoegiro, Seoul 02455, South Korea
[3] Univ Michigan, Dept Math, 2074 East Hall,530 Church St, Ann Arbor, MI 48109 USA
[4] Univ Oxford, Math Inst, Woodstock Rd, Oxford 0X2 6GG, England
[5] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[6] Pohang Univ Sci & Technol, Dept Math, 77 Cheongam Ro, Pohang 37673, Gyeongbuk, South Korea
[7] Pohang Univ Sci & Technol, IBS Ctr Geometry & Phys, Math Sci Bldg,Room 108,77 Cheongam Ro, Pohang 37673, Gyeongbuk, South Korea
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1093/imrn/rnx271
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Following the method of Seifert surfaces in knot theory, we define arithmetic linking numbers and height pairings of ideals using arithmetic duality theorems, and compute them in terms of n-th power residue symbols. This formalism leads to a precise arithmetic analogue of a "path-integral formula" for linking numbers.
引用
收藏
页码:5674 / 5702
页数:29
相关论文
共 16 条
[1]  
[Anonymous], 1980, PRINCETON MATH SERIE
[2]  
Arnold V.I., 1998, TOPOLOGICAL METHODS, V125
[3]  
Cassels J. W. S., 1967, P INSTR C ORG LMS
[4]  
Chinburg T., ARXIV170507110
[5]  
Chung H.-J., ARXIV160903012
[6]  
Illusie Luc, 1983, Inst. Hautes Etudes Sci. Publ. Math., V57, P73
[7]  
Kim M., ARXIV151005818
[8]  
Mazur B., 1973, ANN SCI ECOLE NORM S, V6, P521, DOI 10.24033/asens.1257
[9]  
Milne J.S, Lectures on etale cohomology
[10]  
Morishita M, 2012, UNIVERSITEXT, P1, DOI 10.100/978-1-4471-2158-9