共 50 条
Self-supporting nitrogen-doped reduced graphene oxide@carbon nanofiber hybrid membranes as high-performance integrated air cathodes in microbial fuel cells
被引:34
|作者:
Xu, Meng
[1
]
Wu, Ling
[2
]
Zhu, Meiwen
[3
]
Wang, Zhipeng
[4
]
Huang, Zheng-Hong
[5
]
Wang, Ming-Xi
[1
]
机构:
[1] Wuhan Inst Technol, Sch Chem & Environm Engn, Key Lab Biomass based Mat Environm & Energy Petr &, Wuhan 430205, Peoples R China
[2] Wuhan Univ Sci & Technol, Sch Chem & Chem Engn, Hubei Prov Key Lab Coal Convers & New Carbon Mat, Wuhan 430081, Peoples R China
[3] Chongqing Acad Metrol & Qual Inspection, Chongqing 401123, Peoples R China
[4] Jiangxi Normal Univ, Inst Adv Mat, 99 Ziyang Ave, Nanchang 330022, Peoples R China
[5] Tsinghua Univ, Sch Mat Sci & Engn, Lab Adv Mat, Beijing 100084, Peoples R China
来源:
基金:
中国国家自然科学基金;
关键词:
Reduced graphene oxide;
Carbon nano fiber;
Integrated air cathode;
Oxygen reduction reaction;
Microbial fuel cell;
OXYGEN-REDUCTION REACTION;
METAL-FREE ELECTROCATALYST;
WASTE-WATER TREATMENT;
POWER-GENERATION;
ACTIVATED CARBON;
CATALYST;
SUPERCAPACITOR;
COMPOSITES;
SPECTROSCOPY;
AEROGEL;
D O I:
10.1016/j.carbon.2022.03.024
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
The traditional air cathode in microbial fuel cell (MFC) usually consists of catalyst layer (CL), supporting layer (SL) and conductive gas diffusion layer (GDL), the overall MFC performance is inevitably affected by the additional and expensive adhesives and conductive agents. Here, we developed an integrated air cathode in MFC without any additional SL, GDL or adhesives. The integrated air cathode was selfsupporting nitrogen-doped reduced graphene oxide@carbon nanofiber (N-rGO@CNF) hybrid membranes fabricated by electrospinning with subsequent heat-treatment under ammonia atmosphere. The as-fabricated N-rGO@CNFs possessed far superior MFC performance and oxygen reduction reaction (ORR) activity to the pristine nitrogen-doped carbon nanofibers (NCNF) and commercial activated carbon (CAC). The amount of rGO embedded into CNF had prominent influence on their ORR activities and MFC performances. N-5-rGO@CNF had the lowest resistance and the maximal exchange current density, exhibiting desirable oxygen reduction performance via a four-electron pathway. The maximum power density of N-5-rGO@CNF can reach 826 mW m-2 in MFC, which is approximately 9, 2.53 and 1.82 times of pristine NCNF, CAC and Pt/C with values of 91, 327 and 454 mW m-2. The outstanding performance of the integrated air-cathodes originates from the integrality, brevity and hybrid composition of the electrospun nanofiber membrane. The appropriate embedded rGO not only improves the bulk conductivity of the rGO@CNF to promote ion adsorption, but also provides vacancies to accommodate ions, the doped nitrogen atoms facilitate O2 adsorption and/or subsequent O-O bond breaking, thus improving the electrochemical performance of N-rGO@CNF in MFC.
引用
收藏
页码:242 / 257
页数:16
相关论文