Metal homeostasis and resistance in bacteria

被引:503
|
作者
Chandrangsu, Pete [1 ]
Rensing, Christopher [2 ,3 ,4 ]
Helmann, John D. [1 ]
机构
[1] Cornell Univ, Dept Microbiol, Wing Hall,123 Wing Dr, Ithaca, NY 14853 USA
[2] Chinese Acad Sci, Inst Urban Environm, Key Lab Urban Environm & Hlth, 1799 Jimei Rd, Xiamen 361021, Peoples R China
[3] Fujian Agr & Forestry Univ, Coll Resources & Environm, Dept Agr Resource & Environm, Boxue Bldg,15 Shangxiadian Rd, Fuzhou 350002, Fujian, Peoples R China
[4] J Craig Venter Inst, 4120 Capricorn Lane, La Jolla, CA 92037 USA
基金
美国国家卫生研究院;
关键词
FERRIC UPTAKE REGULATOR; ENTERICA SEROVAR TYPHIMURIUM; BACILLUS-SUBTILIS FUR; IRON-SPARING RESPONSE; ESCHERICHIA-COLI; STREPTOCOCCUS-PNEUMONIAE; CRYSTAL-STRUCTURE; BRADYRHIZOBIUM-JAPONICUM; STAPHYLOCOCCUS-AUREUS; MANGANESE HOMEOSTASIS;
D O I
10.1038/nrmicro.2017.15
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Metal ions are essential for many reactions, but excess metals can be toxic. In bacteria, metal limitation activates pathways that are involved in the import and mobilization of metals, whereas excess metals induce efflux and storage. In this Review, we highlight recent insights into metal homeostasis, including protein-based and RNA-based sensors that interact directly with metals or metal-containing cofactors. The resulting transcriptional response to metal stress takes place in a stepwise manner and is reinforced by post-transcriptional regulatory systems. Metal limitation and intoxication by the host are evolutionarily ancient strategies for limiting bacterial growth. The details of the resulting growth restriction are beginning to be understood and seem to be organism-specific.
引用
收藏
页码:338 / 350
页数:13
相关论文
共 50 条
  • [21] Copper Homeostasis in Bacteria
    Osman, Deenah
    Cavet, Jennifer S.
    ADVANCES IN APPLIED MICROBIOLOGY, VOL 65, 2008, 65 : 217 - 247
  • [22] Physicochemical homeostasis in bacteria
    Poolman, Bert
    FEMS MICROBIOLOGY REVIEWS, 2023, 47 (04)
  • [23] PH HOMEOSTASIS IN BACTERIA
    PADAN, E
    ZILBERSTEIN, D
    SCHULDINER, S
    BIOCHIMICA ET BIOPHYSICA ACTA, 1981, 650 (2-3) : 151 - 166
  • [24] Metal homeostasis in bacteria and fungi - interesting chemistry and possible targets for novel therapies
    Rowinska-Zyrek, Magdalena
    Kozlowski, Henryk
    JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY, 2017, 22 : S226 - S226
  • [25] ENVIRONMENTAL AND HEALTH CONTROL - ROLE OF METAL RESISTANCE IN BACTERIA
    THRIENE, B
    HELLWIG, A
    WEEGE, KH
    SCHULZ, S
    ZENTRALBLATT FUR BAKTERIOLOGIE MIKROBIOLOGIE UND HYGIENE SERIE B-UMWELTHYGIENE KRANKENHAUSHYGIENE ARBEITSHYGIENE PRAVENTIVE MEDIZIN, 1988, 185 (4-5): : 495 - 495
  • [26] Heavy metal resistance genes and proteins in bacteria and their application
    Brown, NL
    Lloyd, JR
    Jakeman, K
    Hobman, JL
    Bontidean, I
    Mattiasson, B
    Csöregi, E
    BIOCHEMICAL SOCIETY TRANSACTIONS, 1998, 26 (04) : 662 - 665
  • [27] Disruption of Metal Homeostasis and its Effect on Bacterial Growth and Antibiotic Resistance
    Padyab, Nika
    Gallas, Genna
    Lozoya, Maria
    Veltri, Charles
    Hernandez, Jose
    FASEB JOURNAL, 2020, 34
  • [28] Metal homeostasis in bacteria: the role of ArsR–SmtB family of transcriptional repressors in combating varying metal concentrations in the environment
    Rudra P. Saha
    Saikat Samanta
    Surajit Patra
    Diganta Sarkar
    Abinit Saha
    Manoj Kumar Singh
    BioMetals, 2017, 30 : 459 - 503
  • [29] Heavy metal resistance of marine bacteria on the sediments of the Black Sea
    Kalkan, Samet
    MARINE POLLUTION BULLETIN, 2022, 179
  • [30] Metal and antibiotic resistance of bacteria isolated from the Baltic Sea
    Moskot, Marta
    Kotlarska, Ewa
    Jakobkiewicz-Banecka, Joanna
    Gabig-Ciminska, Magdalena
    Fari, Karolina
    Wegrzyn, Grzegorz
    Wrobel, Borys
    INTERNATIONAL MICROBIOLOGY, 2012, 15 (03) : 131 - 139