Metal homeostasis and resistance in bacteria

被引:509
作者
Chandrangsu, Pete [1 ]
Rensing, Christopher [2 ,3 ,4 ]
Helmann, John D. [1 ]
机构
[1] Cornell Univ, Dept Microbiol, Wing Hall,123 Wing Dr, Ithaca, NY 14853 USA
[2] Chinese Acad Sci, Inst Urban Environm, Key Lab Urban Environm & Hlth, 1799 Jimei Rd, Xiamen 361021, Peoples R China
[3] Fujian Agr & Forestry Univ, Coll Resources & Environm, Dept Agr Resource & Environm, Boxue Bldg,15 Shangxiadian Rd, Fuzhou 350002, Fujian, Peoples R China
[4] J Craig Venter Inst, 4120 Capricorn Lane, La Jolla, CA 92037 USA
基金
美国国家卫生研究院;
关键词
FERRIC UPTAKE REGULATOR; ENTERICA SEROVAR TYPHIMURIUM; BACILLUS-SUBTILIS FUR; IRON-SPARING RESPONSE; ESCHERICHIA-COLI; STREPTOCOCCUS-PNEUMONIAE; CRYSTAL-STRUCTURE; BRADYRHIZOBIUM-JAPONICUM; STAPHYLOCOCCUS-AUREUS; MANGANESE HOMEOSTASIS;
D O I
10.1038/nrmicro.2017.15
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Metal ions are essential for many reactions, but excess metals can be toxic. In bacteria, metal limitation activates pathways that are involved in the import and mobilization of metals, whereas excess metals induce efflux and storage. In this Review, we highlight recent insights into metal homeostasis, including protein-based and RNA-based sensors that interact directly with metals or metal-containing cofactors. The resulting transcriptional response to metal stress takes place in a stepwise manner and is reinforced by post-transcriptional regulatory systems. Metal limitation and intoxication by the host are evolutionarily ancient strategies for limiting bacterial growth. The details of the resulting growth restriction are beginning to be understood and seem to be organism-specific.
引用
收藏
页码:338 / 350
页数:13
相关论文
共 174 条
[1]   The Multi-Copper-Ion Oxidase CueO of Salmonella enterica Serovar Typhimurium Is Required for Systemic Virulence [J].
Achard, Maud E. S. ;
Tree, Jai J. ;
Holden, James A. ;
Simpfendorfer, Kim R. ;
Wijburg, Odilia L. C. ;
Strugnell, Richard A. ;
Schembri, Mark A. ;
Sweet, Matthew J. ;
Jennings, Michael P. ;
McEwan, Alastair G. .
INFECTION AND IMMUNITY, 2010, 78 (05) :2312-2319
[2]   Liberation of zinc-containing L31 (RpmE) from ribosomes by its paralogous gene product, YtiA, in Bacillus subtilis [J].
Akanuma, G ;
Nanamiya, H ;
Natori, Y ;
Nomura, N ;
Kawamura, F .
JOURNAL OF BACTERIOLOGY, 2006, 188 (07) :2715-2720
[3]   Zinc toxicity and ATP production in Pseudomonas fluorescens [J].
Alhasawi, A. ;
Auger, C. ;
Appanna, V. P. ;
Chahma, M. ;
Appanna, V. D. .
JOURNAL OF APPLIED MICROBIOLOGY, 2014, 117 (01) :65-73
[4]   Staphylococcus aureus Manganese Transport Protein C Is a Highly Conserved Cell Surface Protein That Elicits Protective Immunity Against S. aureus and Staphylococcus epidermidis [J].
Anderson, Annaliesa S. ;
Scully, Ingrid L. ;
Timofeyeva, Yekaterina ;
Murphy, Ellen ;
McNeil, Lisa K. ;
Mininni, Terri ;
Nunez, Lorna ;
Carriere, Marjolaine ;
Singer, Christine ;
Dilts, Deborah A. ;
Jansen, Kathrin U. .
JOURNAL OF INFECTIOUS DISEASES, 2012, 205 (11) :1688-1696
[5]   Bacterial iron homeostasis [J].
Andrews, SC ;
Robinson, AK ;
Rodríguez-Quiñones, F .
FEMS MICROBIOLOGY REVIEWS, 2003, 27 (2-3) :215-237
[6]   Iron storage in bacteria [J].
Andrews, SC .
ADVANCES IN MICROBIAL PHYSIOLOGY, VOL 40, 1998, 40 :281-351
[7]   Making DNA without iron - induction of a manganese-dependent ribonucleotide reductase in response to iron starvation [J].
Andrews, Simon C. .
MOLECULAR MICROBIOLOGY, 2011, 80 (02) :286-289
[8]   Mononuclear Iron Enzymes Are Primary Targets of Hydrogen Peroxide Stress [J].
Anjem, Adil ;
Imlay, James A. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2012, 287 (19) :15544-15556
[9]   Manganese import is a key element of the OxyR response to hydrogen peroxide in Escherichia coli [J].
Anjem, Adil ;
Varghese, Shery ;
Imlay, James A. .
MOLECULAR MICROBIOLOGY, 2009, 72 (04) :844-858
[10]   Global analysis of the Bacillus subtilis Fur regulon and the iron starvation stimulon [J].
Baichoo, N ;
Wang, T ;
Ye, R ;
Helmann, JD .
MOLECULAR MICROBIOLOGY, 2002, 45 (06) :1613-1629