Quantum key distribution with flawed and leaky sources

被引:58
作者
Pereira, Margarida [1 ]
Curty, Marcos [1 ]
Tamaki, Kiyoshi [2 ]
机构
[1] Univ Vigo, Dept Signal Theory & Commun, Escuela Ingn Telecomunicac, E-36310 Vigo, Spain
[2] Univ Toyama, Grad Sch Sci & Engn Res, Gofuku 3190, Toyama 9308555, Japan
基金
欧盟地平线“2020”;
关键词
SECURITY; CRYPTOGRAPHY; ATTACK;
D O I
10.1038/s41534-019-0180-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In theory, quantum key distribution (QKD) allows secure communications between two parties based on physical laws. However, most of the security proofs of QKD today make unrealistic assumptions and neglect many relevant device imperfections. As a result, they cannot guarantee the security of the practical implementations. Recently, the loss-tolerant protocol (K. Tamaki et al., Phys. Rev. A, 90, 052314, 2014) was proposed to make QKD robust against state preparation flaws. This protocol relies on the emission of qubit systems, which, unfortunately, is difficult to achieve in practice. In this work, we remove such qubit assumption and generalise the loss-tolerant protocol to accommodate multiple optical modes in the emitted signals. These multiple optical modes could arise, e.g., from Trojan horse attacks and/or device imperfections. Our security proof determines some dominant device parameter regimes needed for achieving secure communication and, therefore, it can serve as a guideline to characterise QKD transmitters. Furthermore, we compare our approach with that of H.-K. Lo et al. (Quantum Inf. Comput., 7, 431-458, 2007) and identify which method provides the highest secret key generation rate as a function of the device imperfections. Our work constitutes an important step towards the best practical and secure implementation for QKD.
引用
收藏
页数:12
相关论文
共 46 条
[1]  
[Anonymous], 2007, ARXIV07043661
[2]  
[Anonymous], 1984, P IEEE INT C COMP, DOI DOI 10.1016/J.TCS.2014.05.025
[3]  
Azuma Kazuoki, 1967, Tohoku Mathematical Journal, Second Series, V19, P357, DOI DOI 10.2748/TMJ/1178243286
[4]   Secure Quantum Key Distribution over 421 km of Optical Fiber [J].
Boaron, Alberto ;
Boso, Gianluca ;
Rusca, Davide ;
Vulliez, Cedric ;
Autebert, Claire ;
Caloz, Misael ;
Perrenoud, Matthieu ;
Gras, Gaetan ;
Bussieres, Felix ;
Li, Ming-Jun ;
Nolan, Daniel ;
Martin, Anthony ;
Zbinden, Hugo .
PHYSICAL REVIEW LETTERS, 2018, 121 (19)
[5]   Optimal eavesdropping in quantum cryptography with six states [J].
Bruss, D .
PHYSICAL REVIEW LETTERS, 1998, 81 (14) :3018-3021
[6]   Numerical approach for unstructured quantum key distribution [J].
Coles, Patrick J. ;
Metodiev, Eric M. ;
Lutkenhaus, Norbert .
NATURE COMMUNICATIONS, 2016, 7
[7]   Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits [J].
Ferreira da Silva, T. ;
Vitoreti, D. ;
Xavier, G. B. ;
do Amaral, G. C. ;
Temporao, G. P. ;
von der Weid, J. P. .
PHYSICAL REVIEW A, 2013, 88 (05)
[8]   Full-field implementation of a perfect eavesdropper on a quantum cryptography system [J].
Gerhardt, Ilja ;
Liu, Qin ;
Lamas-Linares, Anta ;
Skaar, Johannes ;
Kurtsiefer, Christian ;
Makarov, Vadim .
NATURE COMMUNICATIONS, 2011, 2
[9]   Trojan-horse attacks on quantum-key-distribution systems [J].
Gisin, N ;
Fasel, S ;
Kraus, B ;
Zbinden, H ;
Ribordy, G .
PHYSICAL REVIEW A, 2006, 73 (02)
[10]   Quantum cryptography [J].
Gisin, N ;
Ribordy, GG ;
Tittel, W ;
Zbinden, H .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :145-195