Equivalence problem and integrability of the Riccati equations

被引:1
作者
Czyzycki, Tomasz [1 ]
Hrivnak, Jiri [2 ]
机构
[1] Univ Bialystok, Inst Math, Bialystok, Poland
[2] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Dept Phys, CR-11519 Prague, Czech Republic
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2010年 / 17卷 / 03期
关键词
General Riccati equation; Equivalence transformations; Invariants;
D O I
10.1007/s00030-009-0049-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the class of general real Riccati equations and find its Lie group of equivalence transformations. Using the Lie algebra of this Lie group and its invariants we formulate criteria of equivalence of the Riccati equations. These criteria determine some cases of the general Riccati equations, which are integrable in quadratures.
引用
收藏
页码:371 / 388
页数:18
相关论文
共 16 条
[1]  
[Anonymous], J APPL MECH TECH PHY
[2]  
BOYKO VM, 2005, ARXIVNLINSI0404020V2
[3]  
CHEN J, 2009, FOUND COMPU IN PRESS
[4]   The Tresse theorem and differential invariants for the nonlinear Schrodinger equation [J].
Czyzycki, T. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (31) :9331-9342
[5]  
IBRAGIMOV NH, 2004, ARCH ALGA, V1
[6]  
IBRAGIMOV NK, 1983, GROUP TRANSFORMATION
[7]  
Lie S., 1884, ARCH MATH, V9, P431
[8]  
MATVEYEV MN, 1980, METHODS INTEGRATING
[9]   On (α,β,γ)-derivations of Lie algebras and corresponding invariant functions [J].
Novotny, Petr ;
Hrivnak, Jiri .
JOURNAL OF GEOMETRY AND PHYSICS, 2008, 58 (02) :208-217
[10]  
Olver P. J., 1986, Applications of Lie Groups to Differential Equations, DOI 10.1007/978-1-4684-0274-2