Artificial intelligence in the analysis of glycosylation data

被引:18
作者
Li, Haining [1 ]
Chiang, Austin W. T. [2 ,3 ]
Lewis, Nathan E. [1 ,2 ,3 ]
机构
[1] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Pediat, La Jolla, CA 92093 USA
[3] 9500 Gilman Dr MC 0760, La Jolla, CA 92093 USA
基金
美国国家卫生研究院;
关键词
Glycosylation machinery; Artificial intelligence; Multi-omics integration; Interpretable models; PROTEIN GLYCOSYLATION; GLYCAN; TOOLS; MODEL;
D O I
10.1016/j.biotechadv.2022.108008
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Glycans are complex, yet ubiquitous across biological systems. They are involved in diverse essential organismal functions. Aberrant glycosylation may lead to disease development, such as cancer, autoimmune diseases, and inflammatory diseases. Glycans, both normal and aberrant, are synthesized using extensive glycosylation machinery, and understanding this machinery can provide invaluable insights for diagnosis, prognosis, and treatment of various diseases. Increasing amounts of glycomics data are being generated thanks to advances in glycoanalytics technologies, but to maximize the value of such data, innovations are needed for analyzing and interpreting large-scale glycomics data. Artificial intelligence (AI) provides a powerful analysis toolbox in many scientific fields, and here we review state-of-the-art AI approaches on glycosylation analysis. We further discuss how models can be analyzed to gain mechanistic insights into glycosylation machinery and how the machinery shapes glycans under different scenarios. Finally, we propose how to leverage the gained knowledge for developing predictive AI-based models of glycosylation. Thus, guiding future research of AI-based glycosylation model development will provide valuable insights into glycosylation and glycan machinery.
引用
收藏
页数:10
相关论文
共 78 条
  • [71] MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification
    Wang, Tongxin
    Shao, Wei
    Huang, Zhi
    Tang, Haixu
    Zhang, Jie
    Ding, Zhengming
    Huang, Kun
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [72] Machine learning and complex biological data
    Xu, Chunming
    Jackson, Scott A.
    [J]. GENOME BIOLOGY, 2019, 20 (1)
  • [73] The GlyCosmos Portal: a unified and comprehensive web resource for the glycosciences
    Yamada, Issaku
    Shiota, Masaaki
    Shinmachi, Daisuke
    Ono, Tamiko
    Tsuchiya, Shinichiro
    Hosoda, Masae
    Fujita, Akihiro
    Aoki, Nobuyuki P.
    Watanabe, Yu
    Fujita, Noriaki
    Angata, Kiyohiko
    Kaji, Hiroyuki
    Narimatsu, Hisashi
    Okuda, Shujiro
    Aoki-Kinoshita, Kiyoko F.
    [J]. NATURE METHODS, 2020, 17 (07) : 649 - 650
  • [74] A comparison of graph- and kernel-based - omics data integration algorithms for classifying complex traits
    Yan, Kang K.
    Zhao, Hongyu
    Pang, Herbert
    [J]. BMC BIOINFORMATICS, 2017, 18 : 539
  • [75] A non-negative matrix factorization method for detecting modules in heterogeneous omics multi-modal data
    Yang, Zi
    Michailidis, George
    [J]. BIOINFORMATICS, 2016, 32 (01) : 1 - 8
  • [76] MIRAGE: The minimum information required for a glycomics experiment
    York, William S.
    Agravat, Sanjay
    Aoki-Kinoshita, Kiyoko F.
    McBride, Ryan
    Campbell, Matthew P.
    Costello, Catherine E.
    Dell, Anne
    Feizi, Ten
    Haslam, Stuart M.
    Karlsson, Niclas
    Khoo, Kay-Hooi
    Kolarich, Daniel
    Liu, Yan
    Novotny, Milos
    Packer, Nicolle H.
    Paulson, James C.
    Rapp, Erdmann
    Ranzinger, Rene
    Rudd, Pauline M.
    Smith, David F.
    Struwe, Weston B.
    Tiemeyer, Michael
    Wells, Lance
    Zaia, Joseph
    Kettner, Carsten
    [J]. GLYCOBIOLOGY, 2014, 24 (05) : 402 - 406
  • [77] A mechanistic model for drug release in PLGA biodegradable stent coatings coupled with polymer degradation and erosion
    Zhu, Xiaoxiang
    Braatz, Richard D.
    [J]. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2015, 103 (07) : 2269 - 2279
  • [78] Cell culture process metabolomics together with multivariate data analysis tools opens new routes for bioprocess development and glycosylation prediction
    Zurcher, Philipp
    Sokolov, Michael
    Bruhlmann, David
    Ducommun, Raphael
    Stettler, Matthieu
    Souquet, Jonathan
    Jordan, Martin
    Broly, Herve
    Morbidelli, Massimo
    Butte, Alessandro
    [J]. BIOTECHNOLOGY PROGRESS, 2020, 36 (05)