Artificial intelligence in the analysis of glycosylation data

被引:18
作者
Li, Haining [1 ]
Chiang, Austin W. T. [2 ,3 ]
Lewis, Nathan E. [1 ,2 ,3 ]
机构
[1] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Pediat, La Jolla, CA 92093 USA
[3] 9500 Gilman Dr MC 0760, La Jolla, CA 92093 USA
基金
美国国家卫生研究院;
关键词
Glycosylation machinery; Artificial intelligence; Multi-omics integration; Interpretable models; PROTEIN GLYCOSYLATION; GLYCAN; TOOLS; MODEL;
D O I
10.1016/j.biotechadv.2022.108008
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Glycans are complex, yet ubiquitous across biological systems. They are involved in diverse essential organismal functions. Aberrant glycosylation may lead to disease development, such as cancer, autoimmune diseases, and inflammatory diseases. Glycans, both normal and aberrant, are synthesized using extensive glycosylation machinery, and understanding this machinery can provide invaluable insights for diagnosis, prognosis, and treatment of various diseases. Increasing amounts of glycomics data are being generated thanks to advances in glycoanalytics technologies, but to maximize the value of such data, innovations are needed for analyzing and interpreting large-scale glycomics data. Artificial intelligence (AI) provides a powerful analysis toolbox in many scientific fields, and here we review state-of-the-art AI approaches on glycosylation analysis. We further discuss how models can be analyzed to gain mechanistic insights into glycosylation machinery and how the machinery shapes glycans under different scenarios. Finally, we propose how to leverage the gained knowledge for developing predictive AI-based models of glycosylation. Thus, guiding future research of AI-based glycosylation model development will provide valuable insights into glycosylation and glycan machinery.
引用
收藏
页数:10
相关论文
共 78 条
  • [41] Vertebrate protein glycosylation: diversity, synthesis and function
    Moremen, Kelley W.
    Tiemeyer, Michael
    Nairn, Alison V.
    [J]. NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2012, 13 (07) : 448 - 462
  • [42] Insights into Bioinformatic Applications for Glycosylation: Instigating an Awakening towards Applying Glycoinformatic Resources for Cancer Diagnosis and Therapy
    Muthu, Manikandan
    Chun, Sechul
    Gopal, Judy
    Anthonydhason, Vimala
    Haga, Steve W.
    Jacintha Prameela Devadoss, Anna
    Oh, Jae-Wook
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (24) : 1 - 22
  • [43] Regulation of glycan structures in animal tissues - Transcript profiling of glycan-related genes
    Nairn, Alison V.
    York, William S.
    Harris, Kyle
    Hall, Erica M.
    Pierce, J. Michael
    Moremen, Kelley W.
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2008, 283 (25) : 17298 - 17313
  • [44] DeepNGlyPred: A Deep Neural Network-Based Approach for Human N-Linked Glycosylation Site Prediction
    Pakhrin, Subash C.
    Aoki-Kinoshita, Kiyoko F.
    Caragea, Doina
    Dukka, B. K. C.
    [J]. MOLECULES, 2021, 26 (23):
  • [45] Portner R., 2014, ANIMAL CELL BIOTECHN, V3rd, DOI [10.1007/978-1-62703-733-4, DOI 10.1007/978-1-62703-733-4]
  • [46] Pour H, 2020, XAI EXPLAINABLE ARTI
  • [47] GlycomeDB-a unified database for carbohydrate structures
    Ranzinger, Rene
    Herget, Stephan
    von der Lieth, Claus-Wilhelm
    Frank, Martin
    [J]. NUCLEIC ACIDS RESEARCH, 2011, 39 : D373 - D376
  • [48] "Why Should I Trust You?" Explaining the Predictions of Any Classifier
    Ribeiro, Marco Tulio
    Singh, Sameer
    Guestrin, Carlos
    [J]. KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, : 1135 - 1144
  • [49] Towards a standardized bioinformatics infrastructure for N- and O-glycomics
    Rojas-Macias, Miguel A.
    Mariethoz, Julien
    Andersson, Peter
    Jin, Chunsheng
    Venkatakrishnan, Vignesh
    Aoki, Nobuyuki P.
    Shinmachi, Daisuke
    Ashwood, Christopher
    Madunic, Katarina
    Zhang, Tao
    Miller, Rebecca L.
    Horlacher, Oliver
    Struwe, Weston B.
    Watanabe, Yu
    Okuda, Shujiro
    Levander, Fredrik
    Kolarich, Daniel
    Rudd, Pauline M.
    Wuhrer, Manfred
    Kettner, Carsten
    Packer, Nicolle H.
    Aoki-Kinoshita, Kiyoko F.
    Lisacek, Frederique
    Karlsson, Niclas G.
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [50] Mass Spectrometry Approaches to Glycomic and Glycoproteomic Analyses
    Ruhaak, L. Renee
    Xu, Gege
    Li, Qiongyu
    Goonatilleke, Elisha
    Lebrilla, Carlito B.
    [J]. CHEMICAL REVIEWS, 2018, 118 (17) : 7886 - 7930