Artificial intelligence in the analysis of glycosylation data

被引:18
作者
Li, Haining [1 ]
Chiang, Austin W. T. [2 ,3 ]
Lewis, Nathan E. [1 ,2 ,3 ]
机构
[1] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Pediat, La Jolla, CA 92093 USA
[3] 9500 Gilman Dr MC 0760, La Jolla, CA 92093 USA
基金
美国国家卫生研究院;
关键词
Glycosylation machinery; Artificial intelligence; Multi-omics integration; Interpretable models; PROTEIN GLYCOSYLATION; GLYCAN; TOOLS; MODEL;
D O I
10.1016/j.biotechadv.2022.108008
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Glycans are complex, yet ubiquitous across biological systems. They are involved in diverse essential organismal functions. Aberrant glycosylation may lead to disease development, such as cancer, autoimmune diseases, and inflammatory diseases. Glycans, both normal and aberrant, are synthesized using extensive glycosylation machinery, and understanding this machinery can provide invaluable insights for diagnosis, prognosis, and treatment of various diseases. Increasing amounts of glycomics data are being generated thanks to advances in glycoanalytics technologies, but to maximize the value of such data, innovations are needed for analyzing and interpreting large-scale glycomics data. Artificial intelligence (AI) provides a powerful analysis toolbox in many scientific fields, and here we review state-of-the-art AI approaches on glycosylation analysis. We further discuss how models can be analyzed to gain mechanistic insights into glycosylation machinery and how the machinery shapes glycans under different scenarios. Finally, we propose how to leverage the gained knowledge for developing predictive AI-based models of glycosylation. Thus, guiding future research of AI-based glycosylation model development will provide valuable insights into glycosylation and glycan machinery.
引用
收藏
页数:10
相关论文
共 78 条
  • [1] Tools for Studying Glycans: Recent Advances in Chemoenzymatic Glycan Labeling
    Aguilar, Aime Lopez
    Briard, Jennie Grace
    Yang, Linette
    Ovryn, Ben
    Macauley, Matthew Scott
    Wu, Peng
    [J]. ACS CHEMICAL BIOLOGY, 2017, 12 (03) : 611 - 621
  • [2] Mass spectrometry for glycan biomarker discovery
    Aizpurua-Olaizola, O.
    Sastre Torano, J.
    Falcon-Perez, J. M.
    Williams, C.
    Reichardt, N.
    Boons, G. -J.
    [J]. TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2018, 100 : 7 - 14
  • [3] Prediction of N-linked glycosylation sites using position relative features and statistical moments
    Akmal, Muhammad Aizaz
    Rasool, Nouman
    Khan, Yaser Daanial
    [J]. PLOS ONE, 2017, 12 (08):
  • [4] Synergising stoichiometric modelling with artificial neural networks to predict antibody glycosylation patterns in Chinese hamster ovary cells
    Antonakoudis, Athanasios
    Strain, Benjamin
    Barbosa, Rodrigo
    del Val, Ioscani Jimenez
    Kontoravdi, Cleo
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2021, 154
  • [5] Correcting for sparsity and interdependence in glycomics by accounting for glycan biosynthesis
    Bao, Bokan
    Kellman, Benjamin P.
    Chiang, Austin W. T.
    Zhang, Yujie
    Sorrentino, James T.
    York, Austin K.
    Mohammad, Mahmoud A.
    Haymond, Morey W.
    Bode, Lars
    Lewis, Nathan E.
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [6] Incorporating RNA-Seq transcriptomics into glycosylation-integrating metabolic network modelling kinetics: Multiomic Chinese hamster ovary (CHO) cell bioreactors
    Bezjak, Lara
    Zajec, Vivian Erklavec
    Baebler, Spela
    Stare, Tjasa
    Gruden, Kristina
    Pohar, Andrej
    Novak, Uros
    Likozar, Blaz
    [J]. BIOTECHNOLOGY AND BIOENGINEERING, 2021, 118 (04) : 1476 - 1490
  • [7] A Useful Guide to Lectin Binding: Machine-Learning Directed Annotation of 57 Unique Lectin Specificities
    Bojar, Daniel
    Meche, Lawrence
    Meng, Guanmin
    Eng, William
    Smith, David F.
    Cummings, Richard D.
    Mahal, Lara K.
    [J]. ACS CHEMICAL BIOLOGY, 2022, : 2993 - 3012
  • [8] Multiomics Analysis of Spatially Distinct Stromal Cells Reveals Tumor-Induced O-Glycosylation of the CDK4-pRB Axis in Fibroblasts at the Invasive Tumor Edge
    Bouchard, Gina
    Garcia-Marques, Fernando Jose
    Karacosta, Loukia Georgiou
    Zhang, Weiruo
    Bermudez, Abel
    Riley, Nicholas McIlvain
    Varma, Sushama
    Mehl, Lindsey Catherine
    Benson, Jalen Anthony
    Shrager, Joseph B.
    Bertozzi, Carolyn Ruth
    Pitteri, Sharon J.
    Giaccia, Amato J.
    Plevritis, Sylvia Katina
    [J]. CANCER RESEARCH, 2022, 82 (04) : 648 - 664
  • [9] Using graph convolutional neural networks to learn a representation for glycans
    Burkholz, Rebekka
    Quackenbush, John
    Bojar, Daniel
    [J]. CELL REPORTS, 2021, 35 (11):
  • [10] Small-molecule control of antibody N-glycosylation in engineered mammalian cells
    Chang, Michelle M.
    Gaidukov, Leonid
    Jung, Giyoung
    Tseng, Wen Allen
    Scarcelli, John J.
    Cornell, Richard
    Marshall, Jeffrey K.
    Lyles, Jonathan L.
    Sakorafas, Paul
    Chu, An-Hsiang Adam
    Cote, Kaffa
    Tzvetkova, Boriana
    Dolatshahi, Sepideh
    Sumit, Madhuresh
    Mulukutla, Bhanu Chandra
    Lauffenburger, Douglas A.
    Figueroa, Bruno, Jr.
    Summers, Nevin M.
    Lu, Timothy K.
    Weiss, Ron
    [J]. NATURE CHEMICAL BIOLOGY, 2019, 15 (07) : 730 - +