A Noninvasive Tool Based on Magnetic Resonance Imaging Radiomics for the Preoperative Prediction of Pathological Complete Response to Neoadjuvant Chemotherapy in Breast Cancer

被引:22
作者
Li, Chenchen [1 ]
Lu, Nian [2 ]
He, Zifan [1 ]
Tan, Yujie [1 ]
Liu, Yajing [1 ]
Chen, Yongjian [3 ]
Wu, Zhuo [4 ]
Liu, Jingwen [1 ]
Ren, Wei [1 ]
Mao, Luhui [1 ]
Yu, Yunfang [1 ,5 ]
Xie, Chuanmiao [6 ]
Yao, Herui [1 ]
机构
[1] Sun Yat Sen Univ, Sun Yat Sen Mem Hosp, Guangdong Prov Key Lab Malignant Tumor Epigenet &, Breast Tumor Ctr,Dept Med Oncol,Phase Clin Trial, Guangzhou, Peoples R China
[2] Sun Yat Sen Univ, Guangdong Key Lab Nasopharyngeal Carcinoma Diag &, State Key Lab Oncol South China,Canc Ctr, Collaborat Innovat Ctr Canc Med,Dept Nasopharynge, Guangzhou, Guangdong, Peoples R China
[3] Sun Yat Sen Univ, Affiliated Hosp 3, Dept Med Oncol, Guangzhou, Peoples R China
[4] Sun Yat Sen Univ, Sun Yat Sen Mem Hosp, Dept Radiol, Guangzhou, Peoples R China
[5] Hong Kong Baptist Univ, Beijing Normal Univ Hong Kong Baptist Univ United, Div Sci & Technol, Zhuhai, Peoples R China
[6] Sun Yat Sen Univ, Guangdong Key Lab Nasopharyngeal Carcinoma Diag &, Collaborat Innovat Ctr Canc Med,Canc Ctr, Dept Med Imaging,State Key Lab Oncol South China, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
MAMMOGRAPHY; MRI;
D O I
10.1245/s10434-022-12034-w
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose This study aimed to identify patients with pathological complete response (pCR) and make better clinical decisions by constructing a preoperative predictive model based on tumoral and peritumoral volumes of multiparametric magnetic resonance imaging (MRI) obtained before neoadjuvant chemotherapy (NAC). Methods This study investigated MRI before NAC in 448 patients with nonmetastatic invasive ductal breast cancer (Sun Yat-sen Memorial Hospital, Sun Yat-sen University, n = 362, training cohort; and Sun Yat-sen University Cancer Center, n = 86, validation cohort). The tumoral and peritumoral volumes of interest (VOIs) were segmented and MRI features were extracted. The radiomic features were filtered via a random forest algorithm, and a supporting vector machine was used for modeling. The receiver operator characteristic curve and area under the curve (AUC) were calculated to assess the performance of the radiomics-based classifiers. Results For each MRI sequence, a total of 863 radiomic features were extracted and the top 30 features were selected for model construction. The radiomic classifiers of tumoral VOI and peritumoral VOI were both promising for predicting pCR, with AUCs of 0.96 and 0.97 in the training cohort and 0.89 and 0.78 in the validation cohort, respectively. The tumoral + peritumoral VOI radiomic model could further improve the predictive accuracy, with AUCs of 0.98 and 0.92 in the training and validation cohorts. Conclusions The tumoral and peritumoral multiparametric MRI radiomics model can promisingly predict pCR in breast cancer using MRI images before surgery. Our results highlighted the potential value of the tumoral and peritumoral radiomic model in cancer management.
引用
收藏
页码:7685 / 7693
页数:9
相关论文
共 35 条
  • [1] Long-term outcomes for neoadjuvant versus adjuvant chemotherapy in early breast cancer: meta-analysis of individual patient data from ten randomised trials
    Alberro, J. A.
    Ballester, B.
    Deulofeu, P.
    Fabregas, R.
    Fraile, M.
    Gubern, J. M.
    Janer, J.
    Moral, A.
    de Pablo, J. L.
    Penalva, G.
    Puig, P.
    Ramos, M.
    Rojo, R.
    Santesteban, P.
    Serra, C.
    Sola, M.
    Solarnau, L.
    Solsona, J.
    Veloso, E.
    Vidal, S.
    Abe, O.
    Abe, R.
    Enomoto, K.
    Kikuchi, K.
    Koyama, H.
    Masuda, H.
    Nomura, Y.
    Ohashi, Y.
    Sakai, K.
    Sugimachi, K.
    Toi, M.
    Tominaga, T.
    Uchino, J.
    Yoshida, M.
    Coles, C. E.
    Haybittle, J. L.
    Moebus, V.
    Leonard, C. F.
    Calais, G.
    Garaud, P.
    Collett, V.
    Davies, C.
    Delmestri, A.
    Sayer, J.
    Harvey, V. J.
    Holdaway, I. M.
    Kay, R. G.
    Mason, B. H.
    Forbe, J. F.
    Franci, P. A.
    [J]. LANCET ONCOLOGY, 2018, 19 (01) : 27 - 39
  • [2] PET/CT radiomics in breast cancer: promising tool for prediction of pathological response to neoadjuvant chemotherapy
    Antunovic, Lidija
    De Sanctis, Rita
    Cozzi, Luca
    Kirienko, Margarita
    Sagona, Andrea
    Torrisi, Rosalba
    Tinterri, Corrado
    Santoro, Armando
    Chiti, Arturo
    Zelic, Renata
    Sollini, Martina
    [J]. EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2019, 46 (07) : 1468 - 1477
  • [3] Diagnostic accuracy of mammography, clinical examination, US, and MR imaging in preoperative assessment of breast cancer
    Berg, WA
    Gutierrez, L
    NessAiver, MS
    Carter, WB
    Bhargavan, M
    Lewis, RS
    Ioffe, OB
    [J]. RADIOLOGY, 2004, 233 (03) : 830 - 849
  • [4] MRI-based machine learning radiomics can predict HER2 expression level and pathologic response after neoadjuvant therapy in HER2 overexpressing breast cancer
    Bitencourt, Almir G., V
    Gibbs, Peter
    Saccarelli, Carolina Rossi
    Daimiel, Isaac
    Lo Gullo, Roberto
    Fox, Michael J.
    Thakur, Sunitha
    Pinker, Katja
    Morris, Elizabeth A.
    Morrow, Monica
    Jochelson, Maxine S.
    [J]. EBIOMEDICINE, 2020, 61
  • [5] Association of Peritumoral Radiomics With Tumor Biology and Pathologic Response to Preoperative Targeted Therapy for HER2 (ERBB2)-Positive Breast Cancer
    Braman, Nathaniel
    Prasanna, Prateek
    Whitney, Jon
    Singh, Salendra
    Beig, Niha
    Etesami, Maryam
    Bates, David D. B.
    Gallagher, Katherine
    Bloch, B. Nicolas
    Vulchi, Manasa
    Turk, Paulette
    Bera, Kaustav
    Abraham, Jame
    Sikov, William M.
    Somlo, George
    Harris, Lyndsay N.
    Gilmore, Hannah
    Plecha, Donna
    Varadan, Vinay
    Madabhushi, Anant
    [J]. JAMA NETWORK OPEN, 2019, 2 (04)
  • [6] Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI
    Braman, Nathaniel M.
    Etesami, Maryam
    Prasanna, Prateek
    Dubchuk, Christina
    Gilmore, Hannah
    Tiwari, Pallavi
    Pletcha, Donna
    Madabhushi, Anant
    [J]. BREAST CANCER RESEARCH, 2017, 19
  • [7] Integrated 18F-FDG PET/MRI in breast cancer: early prediction of response to neoadjuvant chemotherapy
    Cho, Nariya
    Im, Seock-Ah
    Cheon, Gi Jeong
    Park, In-Ae
    Lee, Kyung-Hun
    Kim, Tae-Yong
    Kim, Young Seon
    Kwon, Bo Ra
    Lee, Jung Min
    Suh, Hoon Young
    Suh, Koung Jin
    [J]. EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2018, 45 (03) : 328 - 339
  • [8] Chemotherapy is more effective in patients with breast cancer not expressing steroid hormone receptors:: A study of preoperative treatment
    Colleoni, M
    Viale, G
    Zahrieh, D
    Pruneri, G
    Gentilini, O
    Veronesi, P
    Gelber, RD
    Curigliano, G
    Torrisi, R
    Luini, A
    Intra, M
    Galimberti, V
    Renne, G
    Nolè, F
    Peruzzotti, G
    Goldhirsch, A
    [J]. CLINICAL CANCER RESEARCH, 2004, 10 (19) : 6622 - 6628
  • [9] Radiomics in breast cancer classification and prediction
    Conti, Allegra
    Duggento, Andrea
    Indovina, Iole
    Guerrisi, Maria
    Toschi, Nicola
    [J]. SEMINARS IN CANCER BIOLOGY, 2021, 72 : 238 - 250
  • [10] Cortazar P, 2019, LANCET, V393, P986