A primal-dual interior point trust-region method for nonlinear semidefinite programming

被引:5
作者
Yamashita, Hiroshi [1 ]
Yabe, Hiroshi [2 ]
Harada, Kouhei [1 ]
机构
[1] NTT DATA Math Syst Inc, Tokyo, Japan
[2] Tokyo Univ Sci, Fac Sci, Dept Appl Math, Tokyo, Japan
基金
日本学术振兴会;
关键词
Nonlinear semidefinite programming; primal-dual interior point method; trust-region method; barrier penalty function; primal-dual merit function; global convergence; AUGMENTED LAGRANGIAN METHOD; SUCCESSIVE LINEARIZATION METHODS; ROBUST-CONTROL; CONVERGENCE; OPTIMIZATION; ALGORITHM; PENNON;
D O I
10.1080/10556788.2020.1801678
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we propose a primal-dual interior point trust-region method for solving nonlinear semidefinite programming problems. The method consists of the outer iteration (SDPIP) that finds a Karush-Kuhn-Tucker (KKT) point and the inner iteration (SDPTR) that calculates an approximate barrier KKT point. Algorithm SDPTR combines a commutative class of Newton-like directions with the steepest descent type direction within the framework of the trust-region strategy. We present a trust-region method in primal-dual space and prove the global convergence property of the proposed method. Some numerical experiments are given. In addition, we also present second-order approximations to the primal-dual merit function, and a trust-region method in primal space in Appendix.
引用
收藏
页码:569 / 601
页数:33
相关论文
共 47 条
[1]  
Anjos M. F., 2012, International Series in Operations Research & Management Science
[2]  
Conn A.R., 2000, Trust-Region Methods, DOI [DOI 10.1137/1.9780898719857, 10.1137/1.9780898719857]
[3]   A global algorithm for nonlinear semidefinite programming [J].
Correa, R ;
Ramirez, HC .
SIAM JOURNAL ON OPTIMIZATION, 2004, 15 (01) :303-318
[4]   Robust control via sequential semidefinite programming [J].
Fares, B ;
Noll, D ;
Apkarian, P .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2002, 40 (06) :1791-1820
[5]   An augmented Lagrangian method for a class of LMI-constrained problems in robust control theory [J].
Fares, B ;
Apkarian, P ;
Noll, D .
INTERNATIONAL JOURNAL OF CONTROL, 2001, 74 (04) :348-360
[6]   Nonlinear semidefinite programming: sensitivity, convergence, and an application in passive reduced-order modeling [J].
Freund, Roland W. ;
Jarre, Florian ;
Vogelbusch, Christoph H. .
MATHEMATICAL PROGRAMMING, 2007, 109 (2-3) :581-611
[7]   An interior-point method for semidefinite programming [J].
Helmberg, C ;
Rendl, F ;
Vanderbei, RJ ;
Wolkowicz, H .
SIAM JOURNAL ON OPTIMIZATION, 1996, 6 (02) :342-361
[8]  
Huang XX, 2007, J OPTIMIZ THEORY APP, V132, P1, DOI [10.1007/s10957-006-9055-2, 10.1007/S10957-006-9055-2]
[9]   Approximate augmented Lagrangian functions and nonlinear semidefinite programs [J].
Huang, X. X. ;
Teo, K. L. ;
Yang, X. Q. .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (05) :1283-1296
[10]   A sequential quadratic penalty method for nonlinear semidefinite programming [J].
Huang, XX ;
Yang, XQ ;
Teo, KL .
OPTIMIZATION, 2003, 52 (06) :715-738