Electrocaloric Effect of Perovskite High Entropy Oxide Films

被引:15
作者
Son, Yeongwoo [1 ,2 ]
Zhu, Wanlin [2 ]
Trolier-McKinstry, Susan E. [1 ,2 ]
机构
[1] Penn State, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[2] Penn State, Mat Res Inst, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
electrocaloric effect; entropy-driven phase transformation; high entropy oxides; perovskite structures; pulsed laser deposition; thin films; THIN-FILM; PERFORMANCE;
D O I
10.1002/aelm.202200352
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This paper describes two perovskite high entropy oxide (PHEO) compositions: Pb(Hf0.2Zr0.2Ti0.2Nb0.2Mn0.2)O-3 (Mn PHEO) and Pb(Hf0.2Zr0.2Ti0.2Nb0.2Al0.2)O-3 (Al PHEO). Powders are prepared by conventional solid state sintering by first pre-reacting the B-site oxides, then adding PbO. Phase pure Mn PHEO powder is obtained following calcination of the mixed powders at 750 degrees C for 240 min; however, secondary phases persisted in Al PHEO for heat treatments from 750 degrees C to 1200 degrees C. The Mn PHEO undergoes an entropy-driven phase transformation. Thin films of these compounds are synthesized by pulsed laser deposition (PLD) on a lead zirconate titanate seed layer on Pt-coated SiO2/Si. The dielectric response of the Mn PHEO films show some contribution from space charge polarizability; in contrast, the Al PHEO films show a slim ferroelectric hysteresis loop and relaxor-like characteristics. The Al PHEO has a dielectric permittivity of approximate to 2000 with a loss tangent <0.05 from 100 Hz to 100 kHz; it has a dielectric maximum at 105 +/- 0.5 degrees C and a Burns' temperature of 234 +/- 0.5 degrees C. Indirect measurements based on the Maxwell-relations yielded a maximum electrocaloric temperature change of 8.4 K at 180 degrees C under the applied electric field of 1186 kV cm(-1).
引用
收藏
页数:9
相关论文
共 50 条
[11]   ORIGIN OF FERROELECTRICITY IN PEROVSKITE OXIDES [J].
COHEN, RE .
NATURE, 1992, 358 (6382) :136-138
[12]   Relaxing with relaxors: a review of relaxor ferroelectrics [J].
Cowley, R. A. ;
Gvasaliya, S. N. ;
Lushnikov, S. G. ;
Roessli, B. ;
Rotaru, G. M. .
ADVANCES IN PHYSICS, 2011, 60 (02) :229-327
[13]   Enhanced electrocaloric efficiency via energy recovery [J].
Defay, E. ;
Faye, R. ;
Despesse, G. ;
Strozyk, H. ;
Sette, D. ;
Crossley, S. ;
Moya, X. ;
Mathur, N. D. .
NATURE COMMUNICATIONS, 2018, 9
[14]   High-entropy fluorite oxides [J].
Gild, Joshua ;
Samiee, Mojtaba ;
Braun, Jeffrey L. ;
Harrington, Tyler ;
Vega, Heidy ;
Hopkins, Patrick E. ;
Vecchio, Kenneth ;
Luo, Jian .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2018, 38 (10) :3578-3584
[15]   Heat capacity study of relaxor PbMg1/3Nb2/3O3 in a wide temperature range [J].
Gorev, MV ;
Flerov, IN ;
Bondarev, VS ;
Sciau, P .
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2003, 96 (03) :531-537
[16]   Electrocaloric characteristics in reactive sintered 0.87 Pb(Mg1/3Nb2/3)O3-0.13 PbTiO3 [J].
Hagberg, Juha ;
Uusimaki, Antti ;
Jantunen, Heli .
APPLIED PHYSICS LETTERS, 2008, 92 (13)
[17]   Effects of addition of MnO on piezoelectric properties of lead zirconate titanate [J].
He, LX ;
Li, CE .
JOURNAL OF MATERIALS SCIENCE, 2000, 35 (10) :2477-2480
[18]   Wearable thermoelectrics for personalized thermoregulation [J].
Hong, Sahngki ;
Gu, Yue ;
Seo, Joon Kyo ;
Wang, Joseph ;
Liu, Ping ;
Meng, Y. Shirley ;
Xu, Sheng ;
Chen, Renkun .
SCIENCE ADVANCES, 2019, 5 (05)
[19]   Personal Thermal Management by Metallic Nanowire-Coated Textile [J].
Hsu, Po-Chun ;
Liu, Xiaoge ;
Liu, Chong ;
Xie, Xing ;
Lee, Hye Ryoung ;
Welch, Alex J. ;
Zhao, Tom ;
Cui, Yi .
NANO LETTERS, 2015, 15 (01) :365-371
[20]   Local Structural Heterogeneity and Electromechanical Responses of Ferroelectrics: Learning from Relaxor Ferroelectrics [J].
Li, Fei ;
Zhang, Shujun ;
Damjanovic, Dragan ;
Chen, Long-Qing ;
Shrout, Thomas R. .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (37)