Electrocaloric Effect of Perovskite High Entropy Oxide Films

被引:15
作者
Son, Yeongwoo [1 ,2 ]
Zhu, Wanlin [2 ]
Trolier-McKinstry, Susan E. [1 ,2 ]
机构
[1] Penn State, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[2] Penn State, Mat Res Inst, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
electrocaloric effect; entropy-driven phase transformation; high entropy oxides; perovskite structures; pulsed laser deposition; thin films; THIN-FILM; PERFORMANCE;
D O I
10.1002/aelm.202200352
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This paper describes two perovskite high entropy oxide (PHEO) compositions: Pb(Hf0.2Zr0.2Ti0.2Nb0.2Mn0.2)O-3 (Mn PHEO) and Pb(Hf0.2Zr0.2Ti0.2Nb0.2Al0.2)O-3 (Al PHEO). Powders are prepared by conventional solid state sintering by first pre-reacting the B-site oxides, then adding PbO. Phase pure Mn PHEO powder is obtained following calcination of the mixed powders at 750 degrees C for 240 min; however, secondary phases persisted in Al PHEO for heat treatments from 750 degrees C to 1200 degrees C. The Mn PHEO undergoes an entropy-driven phase transformation. Thin films of these compounds are synthesized by pulsed laser deposition (PLD) on a lead zirconate titanate seed layer on Pt-coated SiO2/Si. The dielectric response of the Mn PHEO films show some contribution from space charge polarizability; in contrast, the Al PHEO films show a slim ferroelectric hysteresis loop and relaxor-like characteristics. The Al PHEO has a dielectric permittivity of approximate to 2000 with a loss tangent <0.05 from 100 Hz to 100 kHz; it has a dielectric maximum at 105 +/- 0.5 degrees C and a Burns' temperature of 234 +/- 0.5 degrees C. Indirect measurements based on the Maxwell-relations yielded a maximum electrocaloric temperature change of 8.4 K at 180 degrees C under the applied electric field of 1186 kV cm(-1).
引用
收藏
页数:9
相关论文
共 50 条
[1]  
[Anonymous], 2015, 2015 INT TECHN SEM I
[2]  
[Anonymous], 2016, Annual Energy outlook 2016
[3]  
Athavale J, 2018, ADV HEAT TRANSFER, V50, P123, DOI 10.1016/bs.aiht.2018.07.001
[4]   Room temperature lithium superionic conductivity in high entropy oxides [J].
Berardan, D. ;
Franger, S. ;
Meena, A. K. ;
Dragoe, N. .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (24) :9536-9541
[5]   Colossal dielectric constant in high entropy oxides [J].
Berardan, David ;
Franger, Sylvain ;
Dragoe, Diana ;
Meena, Arun Kumar ;
Dragoe, Nita .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2016, 10 (04) :328-333
[6]   Effect of lead content on the performance of niobium-doped {100} textured lead zirconate titanate films [J].
Borman, Trent M. ;
Zhu, Wanlin ;
Wang, Ke ;
Ko, Song Won ;
Mardilovich, Peter ;
Trolier-McKinstry, Susan E. .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2017, 100 (08) :3558-3567
[7]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218
[8]   Large electrocaloric effect in La-doped 0.88Pb(Mg1/3Nb2/3)O3-0.12PbTiO3 relaxor ferroelectric ceramics [J].
Chen, Guorui ;
Zhang, Yongcheng ;
Chu, Xian-Ming ;
Zhao, Guoxia ;
Li, Feng ;
Zhai, Jiwei ;
Ren, Qianqian ;
Li, Bin ;
Li, Shandong .
JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 727 :785-791
[9]  
Chowdhury I, 2009, NAT NANOTECHNOL, V4, P235, DOI [10.1038/nnano.2008.417, 10.1038/NNANO.2008.417]
[10]   Opportunities and challenges for a sustainable energy future [J].
Chu, Steven ;
Majumdar, Arun .
NATURE, 2012, 488 (7411) :294-303