Quad-rotor-shaped non-fullerene electron acceptor materials with potential to enhance the photoelectric performance of organic solar cells

被引:29
作者
Yao, Chuang [1 ]
Yang, Yezi [1 ]
Li, Lei [1 ]
Bo, Maolin [1 ]
Peng, Cheng [1 ]
Wang, Jinshan [2 ]
机构
[1] Yangtze Normal Univ, Sch Mat Sci & Engn, Chongqing Key Lab Extraordinary Bond Engn & Adv M, Chongqing 408100, Peoples R China
[2] Yancheng Inst Technol, Sch Mat Sci & Engn, Yancheng 224051, Peoples R China
基金
中国国家自然科学基金;
关键词
SMALL-MOLECULE; FORCE-FIELD; POLYMER; EFFICIENCY; STRATEGY;
D O I
10.1039/c9ta04084f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In recent years, non-fullerene acceptors, especially fused-ring electron acceptors (FREAs), have been successfully applied to develop high-performance bulk-heterojunction organic solar cells (OSCs). FREAs are typically composed of two strongly electron-withdrawing end groups connected by a planar fused-ring core. Through variation of the fused-ring core and electron-withdrawing end groups, OSCs based on these materials exhibit a higher power conversion efficiency than those based on fullerenes, and the highest power conversion efficiency exceeds 14%. However, the optimum thickness of the active layer of FREAs remains limited to similar to 100 nm, which is mainly due to the low electron mobility of traditional FREAs. Therefore, developing new FREAs with higher electron mobility is of great significance. Here, we proposed two novel FREAs, namely, BFTT-N and BFTT-TN. These FREAs consist of four strongly electron-withdrawing end groups linked by a two-dimensional fused-ring core, forming a structure similar to a quad-rotor helicopter. These two FREAs not only exhibit higher electron mobility than the widely used non-fullerene acceptor ITIC but also have lower frontier molecular orbital energy levels, greater electron affinity, higher absorption coefficients and smaller exciton binding energies. Compared with that of ITIC, the absorption spectrum of BFTT-TN is red shifted approximately 100 nm, and its integrated intensity is 2.4 times that of ITIC. These numbers indicate that BFTT-TN features strong absorption in the visible and near-infrared region and produces more excitons. Simultaneously, the exciton binding energy of BFTT-TN (1.47 eV) is smaller than that of ITIC (2.04 eV), which can facilitate the separation of excitons into free charges. In addition, the electron mobility of BFTT-TN (5.32 x 10(-3) cm(2) V-1 s(-1)) is 6.5 times that of ITIC (8.20 x 10(-4) cm(2) V-1 s(-1)), which can accelerate the transmission of electrons to improve the short-circuit current. All these results imply that the quad-rotor-shaped FREAs are more suitable as electron acceptors for high-performance OSCs. The quad-rotor-shaped FREAs are expected to be an important candidate for the development of next-generation FREAs for high-performance OSCs.
引用
收藏
页码:18150 / 18157
页数:8
相关论文
共 57 条
[41]   Definition and testing of the GROMOS force-field versions 54A7 and 54B7 [J].
Schmid, Nathan ;
Eichenberger, Andreas P. ;
Choutko, Alexandra ;
Riniker, Sereina ;
Winger, Moritz ;
Mark, Alan E. ;
van Gunsteren, Wilfred F. .
EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2011, 40 (07) :843-856
[42]   Electron Delocalization in Perylene Diimide Helicenes [J].
Schuster, Nathaniel J. ;
Paley, Daniel W. ;
Jockusch, Steffen ;
Ng, Fay ;
Steigerwald, Michael L. ;
Nuckolls, Colin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (43) :13519-13523
[43]  
Spackman M. A., 2007, ANGEW CHEM, V119, P6888
[44]   Molecular orbital calculations of the substituent effect on intermolecular CH/π interaction in C2H3X-C6H6 complexes (X = H, F, Cl, Br, and OH) [J].
Takahashi, O ;
Kohno, Y ;
Saito, K .
CHEMICAL PHYSICS LETTERS, 2003, 378 (5-6) :509-515
[45]   10.8% Efficiency Polymer Solar Cells Based on PTB7-Th and PC71BM via Binary Solvent Additives Treatment [J].
Wan, Qun ;
Guo, Xia ;
Wang, Zaiyu ;
Li, Wanbin ;
Guo, Bing ;
Ma, Wei ;
Zhang, Maojie ;
Li, Yongfang .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (36) :6635-6640
[46]   Fused Hexacyclic Nonfullerene Acceptor with Strong Near-Infrared Absorption for Semitransparent Organic Solar Cells with 9.77% Efficiency [J].
Wang, Wei ;
Yan, Cenqi ;
Lau, Tsz-Ki ;
Wang, Jiayu ;
Liu, Kuan ;
Fan, Yan ;
Lu, Xinhui ;
Zhan, Xiaowei .
ADVANCED MATERIALS, 2017, 29 (31)
[47]   Optimal bulk-heterojunction morphology enabled by fibril network strategy for high-performance organic solar cells [J].
Xia, Tian ;
Cai, Yunhao ;
Fu, Huiting ;
Sun, Yanming .
SCIENCE CHINA-CHEMISTRY, 2019, 62 (06) :662-668
[48]   Achievement of High Voc of 1.02 V for P3HT-Based Organic Solar Cell Using a Benzotriazole-Containing Non-Fullerene Acceptor [J].
Xiao, Bo ;
Tang, Ailing ;
Zhang, Jianqi ;
Mahmood, Asif ;
Wei, Zhixiang ;
Zhou, Erjun .
ADVANCED ENERGY MATERIALS, 2017, 7 (08)
[49]   A Novel Thiophene-Fused Ending Group Enabling an Excellent Small Molecule Acceptor for High-Performance Fullerene-Free Polymer Solar Cells with 11.8% Efficiency [J].
Xie, Dongjun ;
Liu, Tao ;
Gao, Wei ;
Zhong, Cheng ;
Huo, Lijun ;
Luo, Zhenghui ;
Wu, Kailong ;
Xiong, Wentao ;
Liu, Feng ;
Sun, Yanming ;
Yang, Chuluo .
SOLAR RRL, 2017, 1 (06)
[50]   Non-fullerene acceptors for organic solar cells [J].
Yan, Cenqi ;
Barlow, Stephen ;
Wang, Zhaohui ;
Yan, He ;
Jen, Alex K. -Y. ;
Marder, Seth R. ;
Zhan, Xiaowei .
NATURE REVIEWS MATERIALS, 2018, 3 (03)