Topology of billiard problems, II

被引:16
作者
Farber, M [1 ]
机构
[1] Tel Aviv Univ, Dept Math, IL-69978 Tel Aviv, Israel
关键词
D O I
10.1215/S0012-7094-02-11536-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we give topological lower bounds on the number of periodic and of closed trajectories in strictly convex smooth billiards T subset of Rm+1. Namely, for given n, we estimate the number of n-periodic billiard trajectories in T and also estimate the number of billiard trajectories which start and end at a given point A is an element of partial derivativeT and make a prescribed number n of reflections at the boundary a T of the billiard domain. We use variational reduction, admitting a finite group of symmetries, and apply a topological approach based on equivariant Morse and Lusternik-Schnirelman theories.
引用
收藏
页码:587 / 621
页数:35
相关论文
共 14 条
[1]  
[Anonymous], 1995, Riemannian geometry and geometric analysis
[2]   PERIODIC TRAJECTORIES IN 3-DIMENSIONAL BIRKHOFF BILLIARDS [J].
BABENKO, IK .
MATHEMATICS OF THE USSR-SBORNIK, 1992, 71 (01) :1-13
[3]  
BIRKHOFF GD, 1966, AM MATH SOC C PUBL, V9
[4]  
CLAPP M, 1991, J REINE ANGEW MATH, V418, P1
[5]   Morse theory for continuous functionals [J].
Corvellec, JN .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 196 (03) :1050-1072
[6]   A CRITICAL-POINT THEORY FOR NONSMOOTH FUNCTIONALS [J].
DEGIOVANNI, M ;
MARZOCCHI, M .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1994, 167 :73-100
[7]  
Fadell E., 1992, Bol. Soc. Mat. Mexicana (2), V37, P151, DOI DOI 10.1016/0165-1765(91)90092
[8]  
Farber M, 2002, DUKE MATH J, V115, P559, DOI 10.1215/S0012-7094-02-11535-X
[9]   Topology of cyclic configuration spaces and periodic trajectories of multi-dimensional billiards [J].
Farber, M ;
Tabachnikov, S .
TOPOLOGY, 2002, 41 (03) :553-589
[10]  
KOZLOV V, 1999, TRANSL MATH MONOGR, V89