Minimization of semicoercive functions: a generalization of Fichera's existence theorem for the Signorini problem

被引:0
作者
Del Piero, Gianpietro [1 ,2 ]
机构
[1] Univ Ferrara, Dipartimento Ingn, I-44100 Ferrara, Italy
[2] Int Res Ctr M&MoCS, Cisterna Latina, Italy
关键词
Convex optimization; Noncoercive variational problems; Signorini problem; Fichera theorem; Motzkin decomposition; CONVEX-SETS; CLOSEDNESS;
D O I
10.1007/s00161-014-0379-0
中图分类号
O414.1 [热力学];
学科分类号
摘要
The existence theorem of Fichera for the minimum problem of semicoercive quadratic functions in a Hilbert space is extended to a more general class of convex and lower semicontinuous functions. For unbounded domains, the behavior at infinity is controlled by a lemma which states that every unbounded sequence with bounded energy has a subsequence whose directions converge to a direction of recession of the function. Thanks to this result, semicoerciveness plus the assumption that the effective domain is boundedly generated, that is, admits a Motzkin decomposition, become sufficient conditions for existence. In particular, for functions with a smooth quadratic part, a generalization of the existence condition given by Fichera's theorem is proved.
引用
收藏
页码:5 / 17
页数:13
相关论文
共 29 条
  • [11] Ciarlet P. G., 1988, 3 DIMENSIONAL ELASTI, VI
  • [12] Duvaut G., 1971, P INT C MATH NIC 197, V3, P71
  • [13] EKELAND I, 1974, CONVEX ANAL VARIATIO
  • [14] Ernst E, 2005, NONCON OPTIM ITS APP, V79, P343
  • [15] FICHERA G., 1964, Atti Accad. Naz. Lincei Mem. Sez., VI, P71
  • [16] Fichera G, 1972, HDB PHYS, VVIa/2, P391
  • [17] Motzkin decomposition of closed convex sets via truncation
    Goberna, M. A.
    Iusem, A.
    Martinez-Legaz, J. E.
    Todorov, M. I.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 400 (01) : 35 - 47
  • [18] GOELEVEN D., 1996, Noncoercive Variational Problems and Related Results
  • [19] Gurtin ME, 1982, An Introduction to Continuum Mechanics
  • [20] VARIATIONAL INEQUALITIES
    LIONS, JL
    STAMPACC.G
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1967, 20 (03) : 493 - &