STRUCTURE LIE OPERATOR ON REAL HYPERSURFACES OF COMPLEX TWO-PLANE GRASSMANNIANS

被引:5
作者
Wang, Yaning [1 ]
机构
[1] Henan Normal Univ, Sch Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
关键词
real hypersurface; complex two-plane Grassmannians; structure Lie operator;
D O I
10.4064/cm8558-1-2022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is proved that on a real hypersurface M in the complex two-plane Grassmannian G(2)(Cm+2), the structure Lie operator is parallel if and only if M is an open part of a tube around a totally geodesic G(2)(Cm+1) in G(2)(Cm+2)
引用
收藏
页码:315 / 320
页数:6
相关论文
共 18 条
  • [1] Alekseevskii D.V., 1968, FUNNKCIONAL ANAL PRI, V2, P11
  • [2] Real hypersurfaces with isometric Reeb flow in complex two-plane Grassmannians
    Berndt, J
    Suh, YJ
    [J]. MONATSHEFTE FUR MATHEMATIK, 2002, 137 (02): : 87 - 98
  • [3] BERNDT J, 1989, J REINE ANGEW MATH, V395, P132
  • [4] Real hypersurfaces in complex two-plane Grassmannians
    Berndt, J
    Suh, YJ
    [J]. MONATSHEFTE FUR MATHEMATIK, 1999, 127 (01): : 1 - 14
  • [5] Berndt J., 1997, Rend. Sem. Mat. Univ. Politec. Torino, V55, P19
  • [6] Jeong I, 2017, KYUNGPOOK MATH J, V57, P525, DOI 10.5666/KMJ.2017.57.3.525
  • [7] CHARACTERIZATIONS OF REAL HYPERSURFACES OF TYPE A IN A COMPLEX SPACE FORM
    Ki, U-Hang
    Kim, In-Bae
    Lim, Dong Ho
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2010, 47 (01) : 1 - 15
  • [9] Lee H., 2017, Hermitian-Grassmannian Submanifolds, P69
  • [10] On characterizations of real hypersurface in complex space form with Codazzi type structure Lie operator
    Lim, Dong Ho
    Sohn, Woon Ha
    [J]. MONATSHEFTE FUR MATHEMATIK, 2014, 173 (03): : 371 - 378