Towards a simplified description of thermoelectric materials: accuracy of approximate density functional theory for phonon dispersions

被引:10
作者
Niehaus, Thomas A. [1 ]
Melissen, Sigismund T. A. G. [1 ]
Aradi, Balint [2 ]
Allaei, S. Mehdi Vaez [3 ]
机构
[1] Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, Inst Lumiere Mat, F-69622 Villeurbanne, France
[2] Univ Bremen, BCCMS, D-28359 Bremen, Germany
[3] Univ Tehran, Dept Phys, Tehran, Iran
基金
欧盟地平线“2020”;
关键词
phonon dispersion; thermoelectric materials; DFTB; lattice conductivity; HARMONIC VIBRATIONAL FREQUENCIES; TIGHT-BINDING; ELECTRONIC-STRUCTURE; COMPLEX MATERIALS; PERFORMANCE; TRANSPORT; PRESSURE; BORON; PARAMETRIZATION; CONSTRUCTION;
D O I
10.1088/1361-648X/ab2e34
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We calculate the phonon-dispersion relations of several two-dimensional materials and diamond using the density-functional based tight-binding approach (DFTB). Our goal is to verify if this numerically efficient method provides sufficiently accurate phonon frequencies and group velocities to compute reliable thermoelectric properties. To this end, the results are compared to available DFT results and experimental data. To quantify the accuracy for a given band, a descriptor is introduced that summarizes contributions to the lattice conductivity that are available already in the harmonic approximation. We find that the DFTB predictions depend strongly on the employed repulsive pair-potentials, which are an important prerequisite of this method. For carbon-based materials, accurate pair-potentials are identified and lead to errors of the descriptor that are of the same order as differences between different local and semi-local DFT approaches.
引用
收藏
页数:10
相关论文
共 69 条
[1]   Effect of strong phonon-phonon coupling on the temperature dependent structural stability and frequency shift of 2D hexagonal boron nitride [J].
Anees, P. ;
Valsakumar, M. C. ;
Panigrahi, B. K. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (04) :2672-2681
[2]  
[Anonymous], 1998, THESIS
[3]   DFTB+, a sparse matrix-based implementation of the DFTB method [J].
Aradi, B. ;
Hourahine, B. ;
Frauenheim, Th. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2007, 111 (26) :5678-5684
[4]   Phonons and related crystal properties from density-functional perturbation theory [J].
Baroni, S ;
de Gironcoli, S ;
Dal Corso, A ;
Giannozzi, P .
REVIEWS OF MODERN PHYSICS, 2001, 73 (02) :515-562
[5]   Elasticity of hexagonal boron nitride: Inelastic x-ray scattering measurements [J].
Bosak, A ;
Serrano, J ;
Krisch, M ;
Watanabe, K ;
Taniguchi, T ;
Kanda, H .
PHYSICAL REVIEW B, 2006, 73 (04)
[6]   EMPIRICAL POTENTIAL FOR HYDROCARBONS FOR USE IN SIMULATING THE CHEMICAL VAPOR-DEPOSITION OF DIAMOND FILMS [J].
BRENNER, DW .
PHYSICAL REVIEW B, 1990, 42 (15) :9458-9471
[7]   REFINEMENT OF CRYSTAL STRUCTURE OF BLACK PHOSPHOROUS [J].
BROWN, A ;
RUNDQVIST, S .
ACTA CRYSTALLOGRAPHICA, 1965, 19 :684-+
[8]   Raman signature and phonon dispersion of atomically thin boron nitride [J].
Cai, Qiran ;
Scullion, Declan ;
Falin, Aleksey ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Chen, Ying ;
Santos, Elton J. G. ;
Li, Lu Hua .
NANOSCALE, 2017, 9 (09) :3059-3067
[9]   Physically founded phonon dispersions of few-layer materials and the case of borophene [J].
Carrete, Jesus ;
Li, Wu ;
Lindsay, Lucas ;
Broido, David A. ;
Gallego, Luis J. ;
Mingo, Natalio .
MATERIALS RESEARCH LETTERS, 2016, 4 (04) :204-211
[10]   Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane [J].
Elias, D. C. ;
Nair, R. R. ;
Mohiuddin, T. M. G. ;
Morozov, S. V. ;
Blake, P. ;
Halsall, M. P. ;
Ferrari, A. C. ;
Boukhvalov, D. W. ;
Katsnelson, M. I. ;
Geim, A. K. ;
Novoselov, K. S. .
SCIENCE, 2009, 323 (5914) :610-613