CURVE TEST FOR ENHANCED IND-SHEAVES AND HOLONOMIC D-MODULES, I

被引:2
作者
Mochizuki, Takuro [1 ]
机构
[1] Kyoto Univ, Res Inst Math Sci, Kyoto 6068502, Japan
来源
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE | 2022年 / 55卷 / 03期
关键词
FLAT MEROMORPHIC CONNECTIONS; GOOD FORMAL STRUCTURES; EQUIVALENCE;
D O I
10.24033/asens.2503
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, the Riemann-Hilbert correspondence was generalized to the context of holonomic D-modules by A. D'Agnolo and M. Kashiwara. Namely, they proved that their enhanced de Rham functor induces a fully faithful embedding of the derived category of cohomologically holonomic complexes of D-modules into the derived category of complexes of cohomologically R-constructible enhanced ind-sheaves. In this series of papers, we study a condition when a complex of R-constructible enhanced indsheaves K is induced by a cohomologically holonomic complex of D-modules. It is our goal to characterize such K in terms of the restriction of K to holomorphic curves. In this paper (part I), as a preliminary, we shall study some issues for multi-sets of subanalytic functions.
引用
收藏
页码:575 / 679
页数:105
相关论文
共 34 条
[1]  
BIERSTONE E, 1988, PUBL MATH-PARIS, P5
[2]   Enhanced perversities [J].
D'Agnolo, Andrea ;
Kashiwara, Masaki .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 751 :185-241
[3]   Riemann-Hilbert correspondence for holonomic D-modules [J].
D'Agnolo, Andrea ;
Kashiwara, Masaki .
PUBLICATIONS MATHEMATIQUES DE L IHES, 2016, 123 (01) :69-197
[4]  
Favre C, 2004, Lecture Notes in Mathematics, V1853
[5]  
Guillermou S, 2019, PROBLEME RIEMANN HIL, V407, P267
[6]  
HARDT RM, 1977, INVENT MATH, V38, P207
[7]  
Hironaka H, 1973, UADERNI GRUPPI RICER
[8]  
Ito Y, 2020, TSUKUBA J MATH, V44, P155
[9]   THE RIEMANN-HILBERT PROBLEM FOR HOLONOMIC SYSTEMS [J].
KASHIWARA, M .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1984, 20 (02) :319-365
[10]  
Kashiwara M, 2001, Asterisque, V271, P136