Coulomb wave functions with complex values of the variable and the parameters

被引:17
作者
Dzieciol, A [1 ]
Yngve, S [1 ]
Fröman, PO [1 ]
机构
[1] Uppsala Univ, Dept Theoret Phys, S-75108 Uppsala, Sweden
关键词
D O I
10.1063/1.533083
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The motivation for the present paper lies in the fact that the literature concerning the Coulomb wave functions F-L(eta,rho) and G(L)(eta,rho) is a jungle in which it may be hard to find a safe way when one needs general formulas for the Coulomb wave functions with complex values of the variable rho and the parameters L and eta. For the Coulomb wave functions and certain linear combinations of these functions we discuss the connection with the Whittaker function, the Coulomb phase shift, Wronskians, reflection formulas (L -->-L-1), integral representations, series expansions, circuital relations (rho -->rho e(+/- i pi)) and asymptotic formulas on a Riemann surface for the variable rho. The parameters L and eta are allowed to assume complex values. (C) 1999 American Institute of Physics. [S0022-2488(99)01710-7].
引用
收藏
页码:6145 / 6166
页数:22
相关论文
共 13 条
[1]  
Abramovitz M., 1964, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables
[2]  
BUCHHOLZ H, 1969, SPRINGER TRACTS NATU, V15
[3]  
CURTIS AR, 1964, ROYAL SOC MATH TABLE, V2
[4]   RESONANCES IN CROSS SECTIONS FOR EXCITATION OF FORBIDDEN LINES IN O2+ [J].
EISSNER, W ;
NUSSBAUMER, H ;
SARAPH, HE ;
SEATON, MJ .
JOURNAL OF PHYSICS PART B ATOMIC AND MOLECULAR PHYSICS, 1969, 2 (03) :341-+
[5]  
HULL MH, 1959, COULOMB WAVE FUNCTIO, V41, P408
[6]   ANALYTICAL STRUCTURE AND PROPERTIES OF COULOMB WAVE-FUNCTIONS FOR REAL AND COMPLEX ENERGIES [J].
HUMBLET, J .
ANNALS OF PHYSICS, 1984, 155 (02) :461-493
[7]  
Luke Y. L., 1969, SPECIAL FUNCTIONS TH, VI
[8]  
MILLER JCP, 1955, TABLES WEBER PARABOL
[9]   THE QUANTUM DEFECT METHOD [J].
SEATON, MJ .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1958, 118 (05) :504-518
[10]   QUANTUM DEFECT THEORY .I. GENERAL FORMULATION [J].
SEATON, MJ .
PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON, 1966, 88 (562P) :801-&