Investigation of the Prussian Blue Analog Co3[Co(CN)6]2 as an Anode Material for Nonaqueous Potassium-Ion Batteries

被引:183
作者
Deng, Leqing [1 ]
Yang, Zhao [1 ]
Tan, Lulu [1 ]
Zeng, Liang [2 ]
Zhu, Yujie [1 ,3 ]
Guo, Lin [1 ]
机构
[1] Beihang Univ, Sch Chem, Beijing 100191, Peoples R China
[2] Tianjin Univ, Collaborat Innovat Ctr Chem Sci & Engn, Sch Chem Engn & Technol, Key Lab Green Chem Technol,Minist Educ, Tianjin 300072, Peoples R China
[3] Beihang Univ, Beijing Adv Innovat Ctr Biomed Engn, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
anode material; Co-3[Co(CN)(6)](2); potassium-ion batteries; Prussian blue analog; reaction mechanisms; CATHODE MATERIAL; WHITE ANALOGS; HIGH-CAPACITY; ELECTRODES; INTERCALATION; FRAMEWORK; SODIUM; LIFE;
D O I
10.1002/adma.201802510
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nonaqueous potassium-ion batteries (KIBs) are attracting increasing attention as a potential low-cost energy-storage system due to the abundance of potassium resources. Here, cobalt hexacyanocobaltate (Co-3[Co(CN)(6)](2)), a typical Prussian blue analog (PBA), is reported as an anode material for nonaqueous KIBs. The as-prepared Co-3[Co(CN)(6)](2) exhibits a highly reversible capacity of 324.5 mAh g(-1) at a current density of 0.1 A g(-1), a superior rate capability (221 mAh g(-1) at 1 A g(-1)), and a favorable long-term cycling stability (200 cycles with 82% capacity retention). Based on a series of characterizations, it is found that potassiation/depotassiation in Co-3[Co(CN)(6)](2) proceeds via solid-state diffusion-limited K-ion insertion/extraction process, in which both carbon-and nitrogen-coordinated cobalt are electrochemically active toward K-ion storage. Finally, the reaction pathway between potassium and Co-3[Co(CN)(6)](2) is proposed. The present study provides new insights on further exploration of PBAs as high-performance electrode materials for KIBs.
引用
收藏
页数:7
相关论文
共 38 条
[1]   Study of oxidation states of the transition metals in a series of Prussian blue analogs using x-ray absorption near edge structure (XANES) spectroscopy [J].
Adak, S. ;
Hartl, M. ;
Daemen, L. ;
Fohtung, E. ;
Nakotte, H. .
JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, 2017, 214 :8-19
[2]   A novel K-ion battery: hexacyanoferrate(II)/graphite cell [J].
Bie, Xiaofei ;
Kubota, Kei ;
Hosaka, Tomooki ;
Chihara, Kuniko ;
Komaba, Shinichi .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (09) :4325-4330
[3]   Potassium ferrous ferricyanide nanoparticles as a high capacity and ultralong life cathode material for nonaqueous potassium-ion batteries [J].
Chong, Shaokun ;
Chen, Yuanzhen ;
Zheng, Yang ;
Tan, Qiang ;
Shu, Chengyong ;
Liu, Yongning ;
Guo, Zaiping .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (43) :22465-22471
[4]  
Dawei S., 2016, ADV MATER, V29
[5]   Crystallite Size Control of Prussian White Analogues for Nonaqueous Potassium-Ion Batteries [J].
He, Guang ;
Nazar, Linda F. .
ACS ENERGY LETTERS, 2017, 2 (05) :1122-1127
[6]   A POLAROGRAPHIC STUDY OF COBALT CYANIDE COMPLEXES [J].
HUME, DN ;
KOLTHOFF, IM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1949, 71 (03) :867-869
[7]   Hard Carbon Microspheres: Potassium-Ion Anode Versus Sodium-Ion Anode [J].
Jian, Zelang ;
Xing, Zhenyu ;
Bommier, Clement ;
Li, Zhifei ;
Ji, Xiulei .
ADVANCED ENERGY MATERIALS, 2016, 6 (03)
[8]   Carbon Electrodes for K-Ion Batteries [J].
Jian, Zelang ;
Luo, Wei ;
Ji, Xiulei .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (36) :11566-11569
[9]  
Kaixiang L., 2018, ANGEW CHEM INT EDIT, V57, P4687
[10]   Enabling Sodium Batteries Using Lithium-Substituted Sodium Layered Transition Metal Oxide Cathodes [J].
Kim, Donghan ;
Kang, Sun-Ho ;
Slater, Michael ;
Rood, Shawn ;
Vaughey, John T. ;
Karan, Naba ;
Balasubramanian, Mahalingam ;
Johnson, Christopher S. .
ADVANCED ENERGY MATERIALS, 2011, 1 (03) :333-336