Lactobacillus reuteri improves gut barrier function and affects diurnal variation of the gut microbiota in mice fed a high-fat diet

被引:55
作者
Li, Shuangqi [1 ]
Qi, Ce [2 ]
Zhu, Hualing [2 ]
Yu, Renqiang [3 ]
Xie, Chunliang [4 ]
Peng, Yuande [4 ]
Yin, Shou-Wei [5 ]
Fan, Jianhui [6 ]
Zhao, Suqing [1 ]
Sun, Jin [2 ]
机构
[1] Guangdong Univ Technol, Sch Biomed & Pharmaceut Sci, Guangzhou 510006, Guangdong, Peoples R China
[2] Jiangnan Univ, Sch Food Sci & Technol, Wuxi, Jiangsu, Peoples R China
[3] Nanjing Med Univ, Affiliated Wuxi Matern & Child Hlth Care Hosp, Wuxi 214002, Jiangsu, Peoples R China
[4] Chinese Acad Agr Sci, Inst Bast Fiber Crops, Changsha 410205, Hunan, Peoples R China
[5] South China Univ Technol, Res & Dev Ctr Food Prot, Sch Food Sci & Engn, Guangzhou 510640, Guangdong, Peoples R China
[6] Sun Yat Sen Univ, Affiliated Hosp 3, Guangzhou 510630, Guangdong, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
BILE-SALTS; OBESITY; HOST; MODULATION; PROMOTES; RECEPTOR; INFLAMMATION; METABOLISM; COLITIS; DISEASE;
D O I
10.1039/c9fo00417c
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Lactobacillus reuteri FN041 is a secretory IgA-targeted Lactobacillus strain from human breast milk that has probiotic potential. The aim of this study was to test whether FN041 can alleviate dyslipidaemia and mucosal-barrier damage caused by a high-fat diet (HFD) and whether it can affect diurnal variation of the intestinal microbiota. C57BL/6 mice were fed either a normal chow diet or high-fat diet (HFD) for 7 weeks and were treated with either PBS as a control or L. reuteri FN041 for 4 weeks. Our results showed that FN041 treatment significantly attenuated HFD-induced weight gain (P < 0.01), accumulation of testicular fat, an increase in locomotor activity during the active phase (P < 0.01), triglyceridaemia, hypercholesterolaemia (P < 0.05), liver Fas overexpression, and Srebp1c mRNA expression inhibition. Moreover, FN041 treatment improved intestinal epithelial barrier function and induced a daily oscillation-dependent change in short-chain fatty acid production by the gut microbiota. A deeper understanding of the molecular pathways participating in intestinal barrier and microbiota modifications, and changes to lipid metabolism under the influence of FN041, will have important implications by potentially opening new horizons for the development of relevant foods to prevent metabolic disorders and unrelated intestinal diseases.
引用
收藏
页码:4705 / 4715
页数:11
相关论文
共 52 条
  • [1] Lactobacillus reuteri increases mucus thickness and ameliorates dextran sulphate sodium-induced colitis in mice
    Ahl, D.
    Liu, H.
    Schreiber, O.
    Roos, S.
    Phillipson, M.
    Holm, L.
    [J]. ACTA PHYSIOLOGICA, 2016, 217 (04) : 300 - 310
  • [2] Introducing GUt Low-Density Array (GULDA) - a validated approach for qPCR-based intestinal microbial community analysis
    Bergstrom, Anders
    Licht, Tine R.
    Wilcks, Andrea
    Andersen, Jens B.
    Schmidt, Line R.
    Gronlund, Hugo A.
    Vigsnaes, Louise K.
    Michaelsen, Kim F.
    Bahl, Martin I.
    [J]. FEMS MICROBIOLOGY LETTERS, 2012, 337 (01) : 38 - 47
  • [3] Can We Prevent Obesity-Related Metabolic Diseases by Dietary Modulation of the Gut Microbiota?
    Brahe, Lena K.
    Astrup, Arne
    Larsen, Lesli H.
    [J]. ADVANCES IN NUTRITION, 2016, 7 (01) : 90 - 101
  • [4] Disruption of Daily Rhythms by High-Fat Diet Is Reversible
    Branecky, Katrina L.
    Niswender, Kevin D.
    Pendergast, Julie S.
    [J]. PLOS ONE, 2015, 10 (09):
  • [5] High-fat diets:: Modeling the metabolic disorders of human obesity in rodents
    Buettner, Roland
    Schoelmerich, Juergen
    Bollheimer, L. Cornelius
    [J]. OBESITY, 2007, 15 (04) : 798 - 808
  • [6] Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability
    Cani, P. D.
    Possemiers, S.
    Van de Wiele, T.
    Guiot, Y.
    Everard, A.
    Rottier, O.
    Geurts, L.
    Naslain, D.
    Neyrinck, A.
    Lambert, D. M.
    Muccioli, G. G.
    Delzenne, N. M.
    [J]. GUT, 2009, 58 (08) : 1091 - 1103
  • [7] Metabolic endotoxemia initiates obesity and insulin resistance
    Cani, Patrice D.
    Amar, Jacques
    Iglesias, Miguel Angel
    Poggi, Marjorie
    Knauf, Claude
    Bastelica, Delphine
    Neyrinck, Audrey M.
    Fava, Francesca
    Tuohy, Kieran M.
    Chabo, Chantal
    Waget, Aurelie
    Delmee, Evelyne
    Cousin, Beatrice
    Sulpice, Thierry
    Chamontin, Bernard
    Ferrieres, Jean
    Tanti, Jean-Francois
    Gibson, Glenn R.
    Casteilla, Louis
    Delzenne, Nathalie M.
    Alessi, Marie Christine
    Burcelin, Remy
    [J]. DIABETES, 2007, 56 (07) : 1761 - 1772
  • [8] MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data
    Dhariwal, Achal
    Chong, Jasmine
    Habib, Salam
    King, Irah L.
    Agellon, Luis B.
    Xia, Jianguo
    [J]. NUCLEIC ACIDS RESEARCH, 2017, 45 (W1) : W180 - W188
  • [9] Donaldson G.P., 2018, SCIENCE, V6390
  • [10] Obesity in Low- and Middle-Income Countries: Burden, Drivers, and Emerging Challenges
    Ford, Nicole D.
    Patel, Shivani A.
    Narayan, M. Venkat
    [J]. ANNUAL REVIEW OF PUBLIC HEALTH, VOL 38, 2017, 38 : 145 - 164