Characterizations of the strain-stiffening property and cytotoxicity in the self-assembled polyampholyte hydrogel

被引:0
作者
Gustini [1 ]
Lin, Wei-Chih [1 ]
机构
[1] Natl Sun Yat Sen Univ, Dept Mech & Electromech Engn, Kaohsiung, Taiwan
关键词
Strain-stiffening; Polyampholyte; P(TM co SA-CAA) hydrogel; Nanofibrillar network; Sodium hydroxide; Cytotoxicity; MECHANICAL-PROPERTIES; STRESS;
D O I
10.1007/s12206-022-0446-6
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Strain-stiffening is a mechanical response that mimics the behavior of biological tissues. In this study, we fabricated and characterized P(TM co SA-CAA) hydrogel. These hydrogels were referred to as SA, 0.75 SA + 0.25 CAA, 0.5 SA + 0.5 CAA, 0.25 SA + 0.75 CAA, and CAA. Scanning electron microscopy of the hydrogel revealed that the nanofibrillar networks were homogeneously and compactly connected. Notably, the addition of SA-CAA led to remarkable improvement (of 260 kPa and over fourfold) in the elastic modulus and elongation at the break point. The best strain-stiffening was observed for the 0.5 SA + 0.5 CAA hydrogel. Additionally, the investigation of P(TM co SA-CAA) hydrogel mechanism viability and proliferation revealed no toxicity. The strain-stiffening property of P(TM co SA-CAA) facilitates the adhesion of cells. These results suggest that the strain-stiffening of self-assembled P(TM co SA-CAA) hydrogels may be appealing for biomedical applications.
引用
收藏
页码:2653 / 2661
页数:9
相关论文
共 40 条
[1]   Nanofibrillar Hydrogels by Temperature Driven Self-Assembly: New Structures for Cell Growth and Their Biological and Medical Implications [J].
Abalymov, Anatolii A. ;
Santos, Carlos A. B. ;
Van der Meeren, Louis ;
Van de Walle, Davy ;
Dewettinck, Koen ;
Parakhonskiy, Bogdan, V ;
Skirtach, Andre G. .
ADVANCED MATERIALS INTERFACES, 2021, 8 (15)
[2]   Formation of hydrogels from cellulose nanofibers [J].
Abe, Kentaro ;
Yano, Hiroyuki .
CARBOHYDRATE POLYMERS, 2011, 85 (04) :733-737
[3]   Strain-Stiffening of Agarose Gels [J].
Bertula, Kia ;
Martikainen, Lahja ;
Munne, Pauliina ;
Hietala, Sami ;
Klefstrom, Juha ;
Ikkala, Olli ;
Nonappa .
ACS MACRO LETTERS, 2019, 8 (06) :670-675
[4]   Stress management in composite biopolymer networks [J].
Burla, Federica ;
Tauber, Justin ;
Dussi, Simone ;
van Der Gucht, Jasper ;
Koenderink, Gijsje H. .
NATURE PHYSICS, 2019, 15 (06) :549-+
[5]   Tunable multifunctional tissue engineering scaffolds composed of three-component polyampholyte polymers [J].
Cao, Siyu ;
Barcellona, Marcos N. ;
Pfeiffer, Ferris ;
Bernards, Matthew T. .
JOURNAL OF APPLIED POLYMER SCIENCE, 2016, 133 (40)
[6]   Specific Ion Effects in Polyampholyte Hydrogels Dialyzed in Aqueous Electrolytic Solutions [J].
Charaya, Hemant ;
Li, Xinda ;
Jen, Nathan ;
Chung, Hyun-Joong .
LANGMUIR, 2019, 35 (05) :1526-1533
[7]   Supramolecular Nanofibrillar Polymer Hydrogels [J].
Chau, Mokit ;
Sriskandha, Shivanthi Easwari ;
Therien-Aubin, Heloise ;
Kumacheva, Eugenia .
SUPRAMOLECULAR POLYMER NETWORKS AND GELS, 2015, 268 :167-208
[8]   Tension Strain-Softening and Compression Strain-Stiffening Behavior of Brain White Matter [J].
Eskandari, Faezeh ;
Shafieian, Mehdi ;
Aghdam, Mohammad M. ;
Laksari, Kaveh .
ANNALS OF BIOMEDICAL ENGINEERING, 2021, 49 (01) :276-286
[9]   A new anisotropic soft tissue model for elimination of unphysical auxetic behaviour [J].
Fereidoonnezhad, B. ;
O'Connor, C. ;
McGarry, J. P. .
JOURNAL OF BIOMECHANICS, 2020, 111
[10]   αvβ3 Integrin drives fibroblast contraction and strain stiffening of soft provisional matrix during progressive fibrosis [J].
Fiore, Vincent F. ;
Wong, Simon S. ;
Tran, Coleen ;
Tan, Chunting ;
Xu, Wenwei ;
Sulchek, Todd ;
White, Eric S. ;
Hagood, James S. ;
Barker, Thomas H. .
JCI INSIGHT, 2018, 3 (20)